首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2019年   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2005年   1篇
  1990年   1篇
  1989年   1篇
  1977年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
In recent years, progress in the study of the lateral organization of the plasma membrane has led to the proposal that mammalian cells use two different organelles to store lipids: intracellular lipid droplets (LDs) and plasma membrane caveolae. Experimental evidence suggests that caveolin (CAV) may act as a sensitive lipid-organizing molecule that physically connects these two lipid-storing organelles. Here, we determine the sequences necessary for efficient sorting of CAV to LDs. We show that targeting is a process cooperatively mediated by two motifs. CAV's central hydrophobic domain (Hyd) anchors CAV to the endoplasmic reticulum (ER). Next, positively charged sequences (Pos-Seqs) mediate sorting of CAVs into LDs. Our findings were confirmed by identifying an equivalent, non-conserved but functionally interchangeable Pos-Seq in ALDI, a bona fide LD-resident protein. Using this information, we were able to retarget a cytosolic protein and convert it to an LD-resident protein. Further studies suggest three requirements for targeting via this mechanism: the positive charge of the Pos-Seq, physical proximity between Pos-Seq and Hyd and a precise spatial orientation between both motifs. The study uncovers remarkable similarities with the signals that target proteins to the membrane of mitochondria and peroxisomes  相似文献   
2.
Over the past three decades, the increasing rates of obesity have led to an alarming obesity epidemic worldwide. Obesity is associated with an increased risk of cardiovascular diseases; thus, it is essential to define the molecular mechanisms by which obesity affects heart function. Individuals with obesity and overweight have shown changes in cardiac structure and function, leading to cardiomyopathy, hypertrophy, atrial fibrillation, and arrhythmia. Autophagy is a highly conserved recycling mechanism that delivers proteins and damaged organelles to lysosomes for degradation. In the hearts of patients and mouse models with obesity, this process is impaired. Furthermore, it has been shown that autophagy flux restoration in obesity models improves cardiac function. Therefore, autophagy may play an important role in mitigating the adverse effects of obesity on the heart. Throughout this review, we will discuss the benefits of autophagy on the heart in obesity and how regulating autophagy might be a therapeutic tool to reduce the risk of obesity‐associated cardiovascular diseases.  相似文献   
3.
Osteogenic differentiation of osteoprogenitor cells in three-dimensional (3D) in vitro culture remains poorly understood. Using quantitative real-time RT-PCR techniques, we examined mRNA expression of alkaline phosphatase, osteocalcin, and vascular endothelial growth factor (VEGF) in murine preosteoblastic MC3T3-E1 cells cultured for 48 h and 14 days on conventional two-dimensional (2D) poly(L-lactide-co-glycolide) (PLGA) films and 3D PLGA scaffolds. Differences in VEGF secretion and function between 2D and 3D culture systems were examined using Western blots and an in vitro Matrigel-based angiogenesis assay. Expression of both alkaline phosphatase and osteocalcin in cells cultured on 3D scaffolds was significantly downregulated relative to 2D controls in 48 h and 14 day cultures. In contrast, elevated levels of VEGF expression in 3D culture were noted at every time point in short- and long-term culture. VEGF protein secretion in 3D cultures was triple the amount of secretion observed in 2D controls. Conditioned medium from 3D cultures induced an enhanced level of angiogenic activity, as evidenced by increases in branch points observed in in vitro angiogenesis assays. These results collectively indicate that MC3T3-E1 cells commit to osteogenic differentiation at a slower rate when cultured on 3D PLGA scaffolds and that VEGF is preferentially expressed by these cells when they are cultured in three dimensions. gene expression; osteogenesis; angiogenesis  相似文献   
4.

Background

We recently reported that ER stress plays a key role in vascular endothelial dysfunction during hypertension. In this study we aimed to elucidate the mechanisms by which ER stress induction and oxidative stress impair vascular endothelial function.

Methodology/principal findings

We conducted in vitro studies with primary endothelial cells from coronary arteries stimulated with tunicamycin, 1 μg/mL, in the presence or absence of two ER stress inhibitors: tauroursodeoxycholic acid (Tudca), 500 μg/mL, and 4-phenylbutyric acid (PBA), 5 mM. ER stress induction was assessed by enhanced phosphorylation of PERK and eIF2α, and increased expression of CHOP, ATF6 and Grp78/Bip. The ER stress induction increased p38 MAPK phosphorylation, Nox2/4 mRNA levels and NADPH oxidase activity, and decreased eNOS promoter activity, eNOS expression and phosphorylation, and nitrite levels. Interestingly, the inhibition of p38 MAPK pathway reduced CHOP and Bip expressions enhanced by tunicamycin and restored eNOS promoter activation as well as phosphorylation. To study the effects of ER stress induction in vivo, we used C57BL/6J mice and p47phox−/− mice injected with tunicamycin or saline. The ER stress induction in mice significantly impaired vascular endothelium-dependent and independent relaxation in C57BL/6J mice compared with p47phox−/− mice indicating NADPH oxidase activity as an intermediate for ER stress in vascular endothelial dysfunction.

Conclusion/significance

We conclude that chemically induced ER stress leads to a downstream enhancement of p38 MAPK and oxidative stress causing vascular endothelial dysfunction. Our results indicate that inhibition of ER stress could be a novel therapeutic strategy to attenuate vascular dysfunction during cardiovascular diseases.  相似文献   
5.
Caveolins (CAVs) are essential components of caveolae, plasma membrane invaginations with reduced fluidity, reflecting cholesterol accumulation. CAV proteins bind cholesterol, and CAV's ability to move between cellular compartments helps control intracellular cholesterol fluxes. In humans, CAV1 mutations result in lipodystrophy, cell transformation, and cancer. CAV1 gene-disrupted mice exhibit cardiovascular diseases, diabetes, cancer, atherosclerosis, and pulmonary fibrosis. The mechanism or mechanisms underlying these disparate effects are unknown, but our past work suggested that CAV1 deficiency might alter metabolism: CAV1(-/-) mice exhibit impaired liver regeneration unless supplemented with glucose, suggesting systemic inefficiencies requiring additional metabolic intermediates. Establishing a functional link between CAV1 and metabolism would provide a unifying theme to explain these myriad pathologies. Here we demonstrate that impaired proliferation and low survival with glucose restriction is a shortcoming of CAV1-deficient cells caused by impaired mitochondrial function. Without CAV1, free cholesterol accumulates in mitochondrial membranes, increasing membrane condensation and reducing efficiency of the respiratory chain and intrinsic antioxidant defense. Upon activation of oxidative phosphorylation, this promotes accumulation of reactive oxygen species, resulting in cell death. We confirm that this mitochondrial dysfunction predisposes CAV1-deficient animals to mitochondrial-related diseases such as steatohepatitis and neurodegeneration.  相似文献   
6.
Guidelines in concentric mastopexy   总被引:3,自引:0,他引:3  
The scope and technique of concentric mastopexy remain unclear and controversial. In our hands, the procedure has application for mild nipple ptosis, glandular ptosis, and areola asymmetry, as well as the tuberous breast. Early disappointment has changed to increasing satisfaction as we have gained confidence in predicting our results based on the identification of three simple principles of concentric mastopexy. The first and most important, which states Doutside less than or equal to Doriginal + (Doriginal - Dinside), requires that the outer concentric circle must be drawn not to exceed the original areola diameter by more than the original areola diameter exceeds the inner concentric circle diameter. The second principle, Doutside less than or equal to 2 X Dinside, recommends that the outer circle diameter be drawn not to exceed twice that of the inner circle, to prevent poor scarring or over flattening of the breast. The third principle, Dfinal = 1/2(Doutside + Dinside), allows prediction of the final areola size as the average of the diameters of the inner and outer concentric circles. These three principles allow excision of a maximum amount of areola and periareola skin without the side effect of poor scars, dilated areola, or misshapened breasts. Applying these three principles to concentric mastopexy with or without augmentation mammaplasty, one may confidently correct a wide variety of deformities, producing more symmetrical, attractive breasts with areolae of a predictable size.  相似文献   
7.
New Zealand Black (NZB) and NZB by New Zealand White (NZW) F1 hybrid (BW) mice develop clinical signs of autoimmune disease between 6 and 10 months of age but spleen cells from these strains have a greatly reduced in vitro response to sheep erythrocytes (SRBC) as early as 5–6 weeks of age. This hyporesponsiveness can be only partially restored with 2-mercaptoethanol, allogeneic macrophages or spleen cells, or allogeneic factor. The response of NZB and BW spleen cells to the thymic independent antigen DNP-Ficoll is nearly normal. The reduced in vitro SRBC response was found to be attributable to splenic T and B cells rather than macrophages. Macrophages from NZB mice were found to function normally. The in vitro behavior of NZB lymphocytes is very similar to non-autoimmune mice infected with common murine viral pathogens. NZB and BW mice may be making an active immune response as early as 5 weeks of age.  相似文献   
8.
9.
Previous studies from our laboratories demonstrated that cells from a human endometrial adenocarcinoma cell line (Ishikawa) responded to estradiol whereas cells from another endometrial cancer line (HEC-50) did not. In an attempt to identify factors responsible for the observed estrogen insensitivity we compared the characteristics of the estradiol receptor (ER) systems in Ishikawa and HEC-50 cells. Saturation analyses of cytosolic estrogen binders were performed over a 0.1-70 nM range of [3H]estradiol concentrations. Equilibrium dissociation constants and number of binding sites were determined by graphic analysis of Scatchard plots or computed by applying Fourier-derived affinity spectrum analysis (FASA) of the binding data. No significant differences were noted in the dissociation constants (Kd approx. 0.6 nM) or number of binding sites (approx. 6-10 fmol/mg protein) for the single binder that could be evaluated by the graphic method in cytosol from the two cell lines. However, 2 binders in Ishikawa cells (Kd approx. 0.2 and 6 nM) could be detected by the FASA method; the higher affinity binder in HEC-50 cells could not be clearly demonstrated. Structural differences in the specific estrogen binders which might distinguish HEC-50 from Ishikawa cells or normal endometrial tissue were investigated by using the anti-ER monoclonal antibody JS 34/32. Interaction of the antibody with [3H]estradiol binders of estrogen-responsive cells and tissue was evident from the formation of labeled complexes that were shown to sediment faster in glycerol density gradients and could be immunoprecipitated with Protein A attached to Sepharose beads. In contrast, the antibody did not recognize labeled specific binders in the HEC-50 cells. Furthermore, [3H]estradiol receptors in Ishikawa cells could be transformed into a species that exhibited increased hydrophilicity, evident from its binding to DNA-cellulose, whereas binders from HEC-50 could not. These results indicate that the lack of responsiveness of HEC-50 cells to estrogens might be due to structural or functional alterations in the ER protein resulting in a loss of its capability to undergo estrogen-directed conformational changes required for biological activity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号