首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
Despite the recent progress in cancer management approaches, the mortality rate of cancer is still growing and there are lots of challenges in the clinics in terms of novel therapeutics. MicroRNAs (miRNA) are regulatory small noncoding RNAs and are already confirmed to have a great role in regulating gene expression level by targeting multiple molecules that affect cell physiology and disease development. Recently, miRNAs have been introduced as promising therapeutic targets for cancer treatment. Regulatory potential of tumor suppressor miRNAs, which enables regulation of entire signaling networks within the cells, makes them an interesting option for developing cancer therapeutics. In this regard, over recent decades, scientists have aimed at developing powerful and safe targeting approaches to restore these suppressive miRNAs in cancerous cells. The present review summarizes the function of miRNAs in tumor development and presents recent findings on how miRNAs have served as therapeutic agents against cancer, with a special focus on tumor suppressor miRNAs (mimics). Moreover, the latest investigations on the therapeutic strategies of miRNA delivery have been presented.  相似文献   
2.

Cantaloupe (Cucumis melo L.) and radish (Raphanus sativus L.) are considered as important vegetables with potential for national and international markets due to their sugars, vitamins and minerals. This study arranged, therefore, to simultaneously investigate the effect of temperature (T) and water potential (ψ) on seed germination (SG) of these plants using two hydrothermal time (HTT) models and to determine cardinal Ts and base water potential (ψb(50)) for both species. The results indicated that SG of both species was more affected by ψ than T (p ≤ 0.001). At Ts below an optimum temperature (To) the ψb(50) was constant (− 0.582 and − 0.760 MPa for radish and cantaloupe, respectively) and then increased linearly by 0.0481 and 0.0446 MPa °C−1 as T increased above To (as thermoinhibition) until 0 MPa at the ceiling temperature (Tc), respectively. As the first report, however, we observed that the T at which ψb(50) begins to change was the same here (that is, Td = To), when determined by either model for both species. This result suggests that the assumption in Rowse and Finch-Savage’s model (Td is often less and or very close to To) may be invalid in some cases. For both species, the base temperature (Tb) and To were not affected by ψ and were constant while there was an exception only for Tc for which the value declined with decreasing ψs (more negative). In general, the estimated Tb, To and Tc were 9.64, 21.3 and 33.0 °C for radish and 11.8, 28.3 and 45.7 °C for cantaloupe in the control condition (ψ = 0 MPa), respectively. The HTT models used here and their parameters, each with strengths and weaknesses, can be used as a predictive tool in both cantaloupe and radish SG simulation models. However, at first, we need to select an appropriate HTT model based on SG behavior of plant species and then use the best model for quantifying the response of SG across Ts and ψs.

  相似文献   
3.
Geobacter sulfurreducens is a model bacterium to study the degradation of organic compounds coupled to the reduction of Fe(III). The response of G. sulfurreducens to the electron donors acetate, formate, hydrogen and a mixture of all three with Fe(III) citrate as electron acceptor was studied using comparative physiological and proteomic approaches. Variations in the supplied electron donors resulted in differential abundance of proteins involved in the citric acid cycle (CAC), gluconeogenesis, electron transport, and hydrogenases and formate dehydrogenase. Our results provided new insights into the electron donor metabolism of G. sulfurreducens. Remarkably, formate was the preferred electron donor compared to acetate, hydrogen, or acetate plus hydrogen. When hydrogen was the electron donor, formate was formed, which was associated with a high abundance of formate dehydrogenase. Notably, abundant proteins of two CO2 fixation pathways (acetyl-CoA pathway and the reversed oxidative CAC) corroborated chemolithoautotrophic growth of G. sulfurreducens with formate or hydrogen and CO2, and provided novel insight into chemolithoautotrophic growth of G. sulfurreducens.  相似文献   
4.
5.
This experiment was arranged to investigate the ability of hydrotime model (θH) for estimating soybean seed germination (cv. ‘JK’) under different accelerated aging periods (AAP, 0, 24, 48, and 72 h) at each of the following water potentials (ψ, 0, ??0.12, ??0.24, and ??0.36 MPa). Results indicated that both germination percentage (GP) and germination rate (GR) significantly influenced by ψ, AAP, and their interactions (P?<?0.01). GP and GR decreased by 62.6 and 47.3% with longer AAP from 0 to 72 h and by 90.7 and 81.5% with lower ψ from zero to ??0.36 MPa as compared to the control, respectively. Therefore, the effect of ψ on GP and GR was more than AAP. The θH value was constant (~?6.71 MPa h?1) till 50.6 h AAP and then linearly declined with the rate of 0.1545 MPa h?1 per hour increase in AAP until 72 h (~?50% lower than its initial value). The ψb(50) value was ? 0.343 MPa in the control and then increased (became more positive) by ~?70% until 72 h AAP (? 0.104 MPa). In general, GP and GR of soybean declined with the increasing ψb(50) which can be due to cell membrane damage and reduce the activity of enzymes and organelles during AAP. Based on our findings, the θH model could describe well these relationships and their parameters can nicely be used for simulating soybean seed germination under this condition.  相似文献   
6.
Molecular Biology Reports - Breast cancer is the most common malignancy in women worldwide. Unfortunately, current therapeutic methods are not completely efficient. Hence, combination therapy with...  相似文献   
7.
Molecular Biology Reports - This study explored the applicability of serum level and tissue expression of Ribonucleotide-diphosphate Reductase subunit M2 B (RRM2B) as reliable biomarkers for...  相似文献   
8.
To quantify both temperature (T) and water potential (ψ) effects on sesame (Sesamum indicum L.) seed germination (SG) and also to determine the cardinal T s for this plant, a laboratory experiment was carried out using hydrothermal time model (HTT). For this purpose, four sesame cultivars (‘Asbomahalleh’, ‘Darab’, ‘Dashtestan’ and ‘Yellowhite’) were germinated at seven constant T s (20, 25, 30, 35, 37, 39 and 43 °C) at each of the following ψ s (0, ? 0.12, ? 0.24 and ? 0.36 MPa; provided by PEG 8000). Germination rate (GR) and germination percentage (GP) significantly influenced by ψ, T and their interactions in all cultivars (P ≤ 0.01). There was no significant difference, based on the confidence intervals of the model coefficients, between cultivars, so an average of cardinal T s was 14.7, 35.4 and 47.2 °C for the minimum (T b), optimum (T o) and maximum (T c) T s, respectively, in the control condition (0 MPa). Hydrotime values in all cultivars decreased when T was increased to T o and then remained constant at T s > T o (15 MPa h?1). An average value of ψ b(50) was estimated to be ? 1.23 MPa at T s ≤ T o and then increased linearly (0.1041 MPa°Ch?1, the slope of the relationship between ψ b(50) and supra-optimal T s) with T when T s increased above T o and finally reached to zero at T c. The T b and T o values were not influenced by ψ, but T c value decreased (from 47.2 for zero to 43.5 °C for ? 0.36 MPa) at supra-optimal T s as a result of the effect of ψ on GR. Based on our findings, this model (as a predictive tool) and or the estimated parameter values in this study can easily be used in sesame SG simulation models to quantitatively characterize the physiological status of sesame seed populations at different T s and ψ s.  相似文献   
9.
10.
Many of the characteristics associated with mammalian sleep are also observed in Drosophila melanogaster Meigen, making the fruit fly a powerful model organism for studying the genetics of this important process. Included among the similarities is the presence of sexual dimorphic sleep patterns, which, in flies, are manifested as increased mid‐day sleep (‘siesta’) in males compared with females. In the present study, targeted mis‐expression of the genes transformer (tra) and tra2 is used to either feminize or masculinize specific neural and non‐neural tissues in the fly. Feminization of male D. melanogaster using three different GAL4 drivers that are expressed in the mushroom bodies induces a female‐like reduced siesta, whereas the masculinization of females using these drivers triggers the male‐like increased siesta. A similar reversal of sex‐specific sleep is also observed by mis‐expressing tra in the fat body, which is a key tissue in energy metabolism and hormone secretion. In addition, the daily expression levels of takeout, an important circadian clock output gene, are sexually dimorphic. Taken together, these experiments suggest that sleep sexual dimorphism in D. melanogaster is driven by multiple neural and non‐neural circuits, within and outside the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号