首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2011年   2篇
  2008年   4篇
  2007年   1篇
  2004年   1篇
  2001年   2篇
  1997年   1篇
  1994年   1篇
排序方式: 共有12条查询结果,搜索用时 968 毫秒
1.
Nonenzymatic modification of proteins is one of the key pathogenic factors in diabetic complications. Uncovering the mechanisms of protein damage caused by glucose is fundamental to understanding this pathogenesis and in the development of new therapies. We investigated whether the mechanism involving reactive oxygen species can propagate protein damage in glycation reactions beyond the classical modifications of lysine and arginine residues. We have demonstrated that glucose can cause specific oxidative modification of tryptophan residues in lysozyme and inhibit lysozyme activity. Furthermore, modification of tryptophan residues was also induced by purified albumin-Amadori, a ribose-derived model glycation intermediate. The AGE inhibitor pyridoxamine (PM) prevented the tryptophan modification, whereas another AGE inhibitor and strong carbonyl scavenger, aminoguanidine, was ineffective. PM specifically inhibited generation of hydroxyl radical from albumin-Amadori and protected tryptophan from oxidation by hydroxyl radical species. We conclude that oxidative degradation of either glucose or the protein-Amadori intermediate causes oxidative modification of protein tryptophan residues via hydroxyl radical and can affect protein function under physiologically relevant conditions. This oxidative stress-induced structural and functional protein damage can be ameliorated by PM via sequestration of catalytic metal ions and scavenging of hydroxyl radical, a mechanism that may contribute to the reported therapeutic effects of PM in the complications of diabetes.  相似文献   
2.
A simple and reliable continuous assay procedure for measurement of cellulase activity from several species using the new substrate resorufin-beta-D-cellobioside (Res-CB) has been developed. The product of enzyme reaction, resorufin, exhibits fluorescence emission at 585 nm with excitation at 571 nm and has a pK(a) of 5.8, which allows continuous measurement of fluorescence turnover at or near physiological pH values. The assay performed using purified cellulase from the microscopic fungus Trichoderma reesei has been shown to give the kinetic parameters K(m) of 112 microM and V(max) of 0.000673 micromol/mL/min. Methods for performing the assay using cellulases isolated from both live Arabidopsis thaliana plant and Aspergillus niger fungal species are presented.  相似文献   
3.
Colorectal cancer (CRC) remains a major worldwide cause of cancer-related morbidity and mortality largely due to the insidious onset of the disease. The current clinical procedures utilized for disease diagnosis are invasive, unpleasant, and inconvenient; hence, the need for simple blood tests that could be used for the early detection of CRC. In this work, we have developed methods for glycoproteomics analysis to identify plasma markers with utility to assist in the detection of colorectal cancer (CRC). Following immunodepletion of the most abundant plasma proteins, the plasma N -linked glycoproteins were enriched using lectin affinity chromatography and subsequently further separated by nonporous silica reversed-phase (NPS-RP)-HPLC. Individual RP-HPLC fractions were printed on nitrocellulose coated slides which were then probed with lectins to determine glycan patterns in plasma samples from 9 normal, 5 adenoma, and 6 colorectal cancer patients. Statistical tools, including principal component analysis, hierarchical clustering, and Z-statistics analysis, were employed to identify distinctive glycosylation patterns. Patients diagnosed with colorectal cancer or adenomas were shown to have dramatically higher levels of sialylation and fucosylation as compared to normal controls. Plasma glycoproteins with aberrant glycosylation were identified by nano-LC-MS/MS, while a lectin blotting methodology was used to validate proteins with significantly altered glycosylation as a function of cancer progression. The potential markers identified in this study for diagnosis to distinguish colorectal cancer from adenoma and normal include elevated sialylation and fucosylation in complement C3, histidine-rich glycoprotein, and kininogen-1. These potential markers of colorectal cancer were subsequently validated by lectin blotting in an independent set of plasma samples obtained from 10 CRC patients, 10 patients with adenomas, and 10 normal subjects. These results demonstrate the utility of this strategy for the identification of N -linked glycan patterns as potential markers of CRC in human plasma, and may have the utility to distinguish different disease states.  相似文献   
4.
Summary Heparin-binding epidermal growth factor (EGF)-like growth factor is a 22-kDa glycoprotein that was originally identified as a secreted product of cultured human macrophages. Although the growth factor mRNA has been identified in various cells and tissues, the tissue distribution of the protein itself has rarely been demonstrated. In this study, the EGF-like growth factor was detected immunohistochemically in a variety of human skin samples by indirect immunofluorescence using a polyclonal rabbit antiserum raised against residues 26–41 of mature heparin-binding EGF. The keratinocytes of a variety of epithelium-derived structures demonstrated reproducible, specific staining for the EGF. In normal tissues, this staining was prominent in the basal cells of the epidermis and in the epithelial cells lining epidermal appendages such as hair follicles, sebaceous sweat glands and eccrine sweat glands. In addition, specific staining was detected in skin cancers derived from the basal epithelial cell layer, including basal and squamous cell carcinomas of the skin, with no staining detected in melanoma specimens. Immunoreactive heparin-binding EGF was characteristically associated with the surface of cells. With minor exceptions, the immunoreactive sites are identical to the known EGF receptor distribution in the skin, and suggest that keratinocyte-derived heparin-binding EGF may act in concert with other EGF family members in processes such as skin morphogenesis and wound repair, as well as in the development of skin cancers This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   
5.
6.
AlphaPIX is a Rho GTPase guanine nucleotide exchange factor domain-containing signaling protein that associates with other proteins involved in cytoskeletal-membrane complexes. It has been shown that PIX proteins play roles in some immune cells, including neutrophils and T cells. In this study, we report the immune system phenotype of alphaPIX knockout mice. We extended alphaPIX expression experiments and found that whereas alphaPIX was specific to immune cells, its homolog betaPIX was expressed in a wider range of cells. Mice lacking alphaPIX had reduced numbers of mature lymphocytes and defective immune responses. Antigen receptor-directed proliferation of alphaPIX(-) T and B cells was also reduced, but basal migration was enhanced. Accompanying these defects, formation of T-cell-B-cell conjugates and recruitment of PAK and Lfa-1 integrin to the immune synapse were impaired in the absence of alphaPIX. Proximal antigen receptor signaling was largely unaffected, with the exception of reduced phosphorylation of PAK and expression of GIT2 in both T cells and B cells. These results reveal specific roles for alphaPIX in the immune system and suggest that redundancy with betaPIX precludes a more severe immune phenotype.  相似文献   
7.
Idiopathic scoliosis (IS) affects approximately 2%–3% of the population and has a heritable component. The genetics of this disorder are complex. Here, we describe a family in which a pericentric inversion of chromosome 8 co-segregates with IS. We have used fluorescence in situ hybridization to identify cloned DNAs that span the breakpoints on the two arms of the chromosome. We have identified a bacterial artificial chromosome (BAC) of 150 kb that crosses the q-arm breakpoint and a BAC of 120 kb that crosses the p-arm breakpoint. The complete genomic DNA sequence of these BACs has been analyzed to identify candidate genes and to localize further the precise breakpoints. This has revealed that the p-arm break does not interrupt any known gene and occurs in a region of highly repetitive sequence elements. On the q-arm, the break occurs between exons 10 and 11 of the -1 syntrophin (SNTG1) gene. Syntrophins are a group of cytoplasmic peripheral membrane proteins that associate directly with dystrophin, the Duchenne muscular dystrophy gene; 1-syntrophin has been shown to be a neuronal cell-specific protein. Mutational analysis of SNTG1 exons in 152 sporadic IS patients has revealed a 6-bp deletion in exon 10 of SNTG1 in one patient and a 2-bp insertion/deletion mutation occurring in a polypyrimidine tract of intronic sequence 20 bases upstream of the SNTG1 exon 5 splice site in two patients. These changes were not seen in a screen of 480 control chromosomes. Genomic DNAs from seven affected individuals within the family of a patient carrying the 6-bp deletion were typed to determine whether the alteration co-segregated with IS. The deletion was only observed in five out of these seven individuals. Thus, although genetic heterogeneity or multiple alleles cannot be ruled out, the 6-bp deletion does not consistently co-segregate with the disease in this family.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   
8.
Phosphoinositides: key players in cell signalling, in time and space   总被引:15,自引:0,他引:15  
Over the last few years, many reports have extended our knowledge of the inositol lipid metabolism and brought out some exciting information about the location, the variety and the role of phosphoinositides (PIs). Besides the so-called "canonical PI pathway" leading to the production of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), the precursor of the intracellular second messengers inositol 1,4,5-trisphosphate and diacylglycerol (DAG), many other metabolic pathways have been identified to produce seven different polyphosphoinositides. Several of these quantitatively minor lipid molecules appear to be specifically involved in the control of cellular events, such as the spatial and temporal organisation of key signalling pathways, the rearrangement of the actin cytoskeleton or the intracellular vesicle trafficking. This is consistent with the fact that many of the enzymes, such as kinases and phosphatases, involved in the tight control of the intracellular level of polyphosphoinositides, are regulated and/or relocated through cell surface receptors for extracellular ligands. The remarkable feature of PIs, which can be rapidly synthesised and degraded in discrete membrane domains or even subnuclear structures, places them as ideal regulators and integrators of very dynamic mechanisms of cell regulation. In this review, we will summarise recent studies on the potential location, the metabolic pathways and the role of the different PIs. Some aspects of the temporal synthesis of D3 PIs will also be discussed.  相似文献   
9.
Nonenzymatic modification of proteins in hyperglycemia is a major mechanism causing diabetic complications. These modifications can have pathogenic consequences when they target active site residues, thus affecting protein function. In the present study, we examined the role of glucose autoxidation in functional protein damage using lysozyme and RGD-α3NC1 domain of collagen IV as model proteins in vitro. We demonstrated that glucose autoxidation induced inhibition of lysozyme activity as well as NC1 domain binding to α(V)β(3) integrin receptor via modification of critical arginine residues by reactive carbonyl species (RCS) glyoxal (GO) and methylglyoxal while nonoxidative glucose adduction to the protein did not affect protein function. The role of RCS in protein damage was confirmed using pyridoxamine which blocked glucose autoxidation and RCS production, thus protecting protein function, even in the presence of high concentrations of glucose. Glucose autoxidation may cause protein damage in vivo since increased levels of GO-derived modifications of arginine residues were detected within the assembly interface of collagen IV NC1 domains isolated from renal ECM of diabetic rats. Since arginine residues are frequently present within protein active sites, glucose autoxidation may be a common mechanism contributing to ECM protein functional damage in hyperglycemia and oxidative environment. Our data also point out the pitfalls in functional studies, particularly in cell culture experiments, that involve glucose treatment but do not take into account toxic effects of RCS derived from glucose autoxidation.  相似文献   
10.
Large tracts of natural habitat are being replaced by agriculture and urban sprawl in Mediterranean regions worldwide. We have limited knowledge about the effects of human activities on native species in these landscapes and which, if any, management practices might enhance the conservation of native biodiversity within them. Through a citizen volunteer bird-monitoring project, we compared bird abundance and species richness in northern Californian riparian zones surrounded by vineyards, urban areas, and natural areas. We assessed both local and landscape-level variables that may enhance native bird diversity in each land use type. We also demonstrate a new statistical approach, generalized estimating equations, to analyze highly variable data, such as that collected by volunteers. Avian abundance was highly correlated with both landscape context and local habitat variables, while avian richness was correlated with local habitat variables, specifically shrub richness, and percent of tree cover. In particular, shrub species richness has a strong positive correlation with riparian-preferring bird species. This suggests that active local management of riparian zones in human-dominated landscapes can increase our ability to retain native bird species in these areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号