首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   2篇
  2010年   8篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1995年   1篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   3篇
  1973年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
1.
By means of one- and two-dimensional (cross) immunoelectrophoresis, immunoelectro-diffusion and radial immunodiffusion, about 20 antigens were detected in mitochondria of meristem, zone of elongation and mature cells, among which some were identified by zymographic methods. The differentiation of root cells is not accompanied by qualitative changes in antigenic spectra of mitochondria and changes in the ratio of antigens (including glutamate and malate dehydrogenases) suggest that mature mitochondria develop from preexisting ones by gradual quantitative changes which are due to different rate of synthesis of constituent proteins.  相似文献   
2.
A method of rapid freezing in supercooled Freon 22 (monochlorodifluoromethane) followed by cryoultramicrotomy is described and shown to yield ultrathin sections in which both the cellular ultrastructure and the distribution of diffusible ions across the cell membrane are preserved and intracellular compartmentalization of diffusabler ions can be quantitated. Quantitative electron probe analysis (Shuman, H., A.V. Somlyo, and A.P. Somlyo. 1976. Ultramicros. 1:317-339.) of freeze-dried ultrathin cryto sections was found to provide a valid measure of the composition of cells and cellular organelles and was used to determine the ionic composition of the in situ terminal cisternae of the sarcoplasmic reticulum (SR), the distribution of CI in skeletal muscle, and the effects of hypertonic solutions on the subcellular composition if striated muscle. There was no evidence of sequestered CI in the terminal cisternae of resting muscles, although calcium (66mmol/kg dry wt +/- 4.6 SE) was detected. The values of [C1](i) determined with small (50-100 nm) diameter probes over cytoplasm excluding organelles over nuclei or terminal cisternae were not significantly different. Mitochondria partially excluded C1, with a cytoplasmic/ mitochondrial Ci ratio of 2.4 +/- 0.88 SD. The elemental concentrations (mmol/kg dry wt +/- SD) of muscle fibers measured with 0.5-9-μm diameter electron probes in normal frog striated muscle were: P, 302 +/- 4.3; S, 189 +/- 2.9;C1, 24 +/- 1.1;K, 404 +/- 4.3, and Mg, 39 +/- 2.1. It is concluded that: (a) in normal muscle the "excess CI" measured with previous bulk chemical analyses and flux studies is not compartmentalized in the SR or in other cellular organelles, and (b) the cytoplasmic C1 in low [K](0) solutions exceeds that predicted by a passive electrochemical distribution. Hypertonic 2.2 X NaCl, 2.5 X sucrose, or 2.2 X Na isethionate produced: (a) swollen vacuoles, frequently paired, adjacent to the Z lines and containing significantly higher than cytoplasmic concentrations of Na and Cl or S (isethionate), but no detectable Ca, and (b) granules of Ca, Mg, and P = approximately (6 Ca + 1 Mg)/6P in the longitudinal SR. It is concluded that hypertonicity produces compartmentalized domains of extracellular solutes within the muscle fibers and translocates Ca into the longitudinal tubules.  相似文献   
3.
4.
The work was focused on the investigation of possible dependencies between the development of viral infection in plants and the presence of high heavy metal concentrations in soil. Field experiments have been conducted in order to study the development of systemic tobacco mosaic virus (TMV) infection in Lycopersicon esculentum L. cv. Miliana plants under effect of separate salts of heavy metals Cu, Zn and Pb deposited in soil. As it is shown, simultaneous effect of viral infection and heavy metals in tenfold maximum permissible concentration leads to decrease of total chlorophyll content in experiment plants mainly due to the degradation of chlorophyll a. The reduction of chlorophyll concentration under the combined influence of both stress factors was more serious comparing to the separate effect of every single factor. Plants' treatment with toxic concentrations of lead and zinc leaded to slight delay in the development of systemic TMV infection together with more than twofold increase of virus content in plants that may be an evidence of synergism between these heavy metal's and virus' effects. Contrary, copper although decreased total chlorophyll content but showed protective properties and significantly reduced amount of virus in plants.  相似文献   
5.
Eight isomeric 17(20)Z- and 17(20)E-pregna-5,17(20)-dien-21-oyl amides, conformationally rigid oxysterol analogues, differing in the structure of the amide moiety have been analyzed. Analysis of low energy conformers revealed that all 17(20)E-isomers had three main energy minima (corresponding to the values of the dihedral angle θ20,21 (C17=C20-C21=O) about ~0°, ~120°, and ~240°); the most occupied minimum corresponded to θ20,21 about ~0°. 17(20) Z-Isomers had either one or two pools of stable low energy conformations. Molecular docking of these compounds to the ligand-binding site of the nuclear receptor LXRβ (a potential target) demonstrated high probability of binding of E-isomers but not Z-isomers with this target. Results of the molecular modeling were confirmed by an experiment in which stimulation of triglyceride biosynthesis in Hep G2 cells in the presence of 17(20)E-3β-hydroxypregna-5,17(20)-dien-21-oyl (hydroxyethyl)amide was demonstrated.  相似文献   
6.
Novel synthetic oxysterols (22S,23S)-3β-hydroxy-22,23-oxido-5α-ergost-8(14)-en-15-one (I) and (22R,23R)-3β-hydroxy-22,23-oxido-5α-ergost-8(14)-en-15-one (II) efficiently inhibited cholesterol biosynthesis in human hepatoma Hep G2 cells during short-term incubation in a serum free medium (IC50 values of 1.9 ± 0.2 and 0.6 ± 0.2 μ M, respectively). Cultivation of Hep G2 cells in the presence of 5 μM concentration of either (I) or (II) resulted in significant reduction of cholesterol biosynthesis (52% and 57% from control), and also changes in biosynthesis of fatty acids, triglycerides, and cholesteryl esters. Compounds (I) and (II) stimulated transformation of exogenous cholesterol to polar products secreted into the culture medium (156 % and 175% of control) as it that was shown in experiments in Hep G2 cells prelabeled with [3H]cholesterol.  相似文献   
7.
The effect on cholesterol metabolism in Hep G2 hepatoma cells was studied for new analogues of 15-ketosterol [3beta-hydroxy-5alpha-cholest-8(14)-en-15-one] (I): (24S)-3beta-hydroxy-24-methyl-5alpha-cholesta-8(14),22-diene-15-one (II), (24S)-3alpha-hydroxy-24-methyl-5-alpha-cholesta-8(14),22-diene-15-one (III), and (24S)-24-methyl-5alpha-cholesta-8(14),22-diene-3,15-dione (IV). Analogues (I) and (II) were found to be equally effective inhibitors of cholesterol biosynthesis after a 3-h incubation with Hep G2 cells; however, (II) produced a stronger inhibitory effect after a 24-h incubation or after an incubation of cells preliminarily treated with the inhibitor in a medium containing no ketosterol. The ability of ketosterols to inhibit cholesterol biosynthesis decreased in the order (II) > (IV) > (III). Ketosterol (II) inhibited, whereas ketosterol (III) stimulated the biosynthesis of cholesteryl esters. (IV) stimulated the biosynthesis of cholesteryl esters at a concentration of 1-10 microM and exerted no marked effect at a concentration of 30 microM. These results indicate that delta8(14)-15-ketosterols containing a modified side chain are of interest as regulators of cholesterol metabolism in liver cells. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 5; see also http: // www.maik.ru.  相似文献   
8.
Treatment of 18-glycyrrhizic acid with a methanolic solution of HCl resulted in 1 : 1 mixture of methyl esters of 18- and 18-glycyrrhetinic acids. Benzoylation of the mixture led to methyl esters of 3-benzoyl-18-glycyrrhetinic acid and 3-benzoyl-18-glycyrrhetinic acid, which were separated by chromatography on silica gel. 18-Glycyrrhetinic acid was prepared by alkaline hydrolysis of methyl 3-benzoyl-18-glycyrrhetinate and was further used for the syntheses of 3-keto-18-glycyrrhetinic acid and methyl esters of 18-glycyrrhetinic acid and 3-keto-18-glycyrrhetinic acid.  相似文献   
9.
(22R,23R)-22,23-dihydroxystigmast-4-en-3-one, (22R,23R)-22,23-dihydroxystigmast-4-en-3,6-dione, (22R,23R)-3beta,5alpha,6beta,22,23-pentahydroxystigmastane, (22R,23R)-5alpha,6alpha-oxido-3beta,22,23-trihydroxystigmastane, (22R,23R)-5beta,6beta-oxido-3beta,22,23-trihydroxystigmastane, and (22R,23R)-3beta,6beta,22,23-tetrahydroxystigmast-4-ene were synthesized. Their cytotoxicities were comparatively studied using the MCF-7 line of carcinoma cells of human mammary gland and cells of human hepatoma of the Hep G2 line.  相似文献   
10.
New analogues of 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one (15-ketosterol) with modified 17-chains [(22S,23S,24S)- and (22R,23R,24S)-3beta-hydroxy-24-methyl-22,23-oxido-5alpha-cholest-8(14)-en-15-ones and (22RS,23xi,24S)-24-methyl-5alpha-cholesta-3beta,22,23-triol-15-one] were synthesized from (22E,24S)-3beta-acetoxy-24-methyl-5alpha-cholesta-8(14),22-dien-15-one. The chiralities of their 22 and 23 centers were determined by NMR spectroscopy. The isomeric 22,23-epoxides effectively inhibited cholesterol biosynthesis in hepatoma Hep G2 cells (IC50 0.9 +/- 0.2 and 0.7 +/- 0.2 microM, respectively), and their activities significantly exceeded those of 15-ketosterol (IC50 4.0 +/- 0.5 microM), (22E,24S)-3beta-hydroxy-24-methyl-5alpha-cholesta-8(14),22-dien-15-one (IC50 3.1 +/- 0.4 microM), and the 3beta,22,23-triol synthesized (IC50 6.0 +/- 1.0 microM). The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号