首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
  17篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
排序方式: 共有17条查询结果,搜索用时 18 毫秒
1.
Two families with autosomal dominantly inherited desmoid tumors have recently been shown to have germline mutations at the 3' end of the APC gene. We subsequently identified an Amish family with autosomal dominantly inherited desmoid tumors. Genetic analysis performed on one family member, a 47-year-old man with multiple desmoid tumors and no colon polyps, revealed a protein truncating mutation in the middle of the APC gene. The truncating mutation is the result of a 337-bp insertion of an Alu I sequence into codon 1526 of the APC gene. The presence of a poly(A) tail at the 3' end of the insertion suggests that the Alu I sequence was inserted by a retrotranspositional event. Germline insertions of Alu I sequences have occasionally been reported to cause other genetic diseases including type I neurofibromatosis, hereditary site-specific breast cancer (BRCA2), and hemophilia B. However, this is the first report of a germline mutation of the APC gene resulting from an Alu I insertion.  相似文献   
2.
Pyoderma gangrenosum, cystic acne, and aseptic arthritis are clinically distinct disorders within the broad class of inflammatory diseases. Although this triad of symptoms is rarely observed in a single patient, a three-generation kindred with autosomal-dominant transmission of these three disorders has been reported as "PAPA syndrome" (MIM 604416). We report mapping of a disease locus for familial pyoderma gangrenosum-acne-arthritis to the long arm of chromosome 15 (maximum two-point LOD score, 5.83; recombination fraction [straight theta] 0 at locus D15S206). Under the assumption of complete penetrance, haplotype analysis of recombination events defined a disease interval of 10 cM, between D15S1023 and D15S979. Successful identification of a single disease locus for this syndrome suggests that these clinically distinct disorders may share a genetic etiology. These data further indicate the role of genes outside the major histocompatibility locus in inflammatory disease.  相似文献   
3.
4.
5.
Abnormal gene dosage usually results in recognizable phenotypic abnormalities, especially if it involves a series of contiguous genes. Schmickel (1986) defined contiguous gene syndromes as diseases resulting from loss or gain of a series of adjacent genes. The terms microdeletion and microduplication as well as segmental aneusomy have also been used to describe such losses or gains that may not be readily detectable by Gbanded analysis. The loss (haploinsufficiency) or gain of a series of adjoining genes may result in a direct phenotypic effect and/or cause a genetic regulatory disturbance. Such syndromic gains or losses are often detectable when in situ hybridization of fluorescent labeled DNA probes or array comparative genomic hybridization technique are used (Gersen and Keagle 2005; Stumm et al. 1999; Barch, Knutsen and Spurbeck 1997). Segmental aneusomies generally occur due to homologous pairing between non-allelic low copy repeats (LCR) followed by crossing over. The LCRs, as part of the repetitive DNA sequences range from 1-500 Kb repeats, share >97% base sequence identity and constitute up to five percent of the genomic DNA. They are distributed throughout the genome, but are more concentrated near the centromeres and telomeres. A segment of 300 bp completely identical sequence within the LCRs is adequate for mediating non-allelic homologous or paralogous pairing. This process results in generating both deletion and duplication of a defined segment.  相似文献   
6.
The Holt-Oram syndrome (HOS) is an autosomal dominant condition characterized by upper limb and cardiac malformations. Mutations in the TBX5 gene cause HOS and have also been associated with isolated heart and arm defects. Interactions between the TBX5, GATA4 and NKX2.5 proteins have been reported in humans. We screened the TBX5, GATA4, and NKX2.5 genes for mutations, by direct sequencing, in 32 unrelated patients presenting classical (8) or atypical HOS (1), isolated congenital heart defects (16) or isolated upper-limb malformations (7). Pathogenic mutations in the TBX5 gene were found in four HOS patients, including two new mutations (c.374delG; c.678G > T) in typical patients, and the hotspot mutation c.835C > T in two patients, one of them with an atypical HOS phenotype involving lower-limb malformations. Two new mutations in the GATA4 gene were found in association with isolated upper-limb malformations, but their clinical significance remains to be established. A previously described possibly pathogenic mutation in the NKX2.5 gene (c.73C > 7) was detected in a patient with isolated heart malformations and also in his clinically normal father.  相似文献   
7.
The autosomal recessive polycystic kidney disease (ARPKD) gene, PKHD1, has been implicated in the genesis or growth of colorectal adenocarcinoma, as a high level of somatic mutations was found in colorectal tumor tissue. To determine whether carriers of a single PKHD1 mutation are at increased risk of colorectal carcinoma, we assessed the prevalence of the commonest European mutation, T36M. First, we assayed a European cohort of ARPKD patients and found T36M was responsible for 13.1% of mutations. We then investigated two European cohorts with colorectal adenocarcinoma versus two control cohorts of similar age and gender. Screening for the most common PKHD1 mutation, T36M, we detected 15:3,603 (0.42%) controls versus 1:3,767 (0.027%) colorectal cancer individuals, indicating that heterozygous PKHD1 mutations are not a risk factor and are protective (p=0.0002). We also show that the carriage rate for PKHD1 mutations in the European population is higher than previous accepted at 3.2% (1:31 genomes).  相似文献   
8.
9.
Approximately 10% of all renal cell carcinomas (RCCs) present a distinctive papillary histology. Familial papillary RCC (PRCC) has been described, but the majority of cases appear to be sporadic. Recently, germline mutations in the MET proto-oncogene on chromosome 7 have been identified in families with hereditary PRCC. We evaluated 59 patients with PRCC for the frequency of MET germline mutations to determine the value of genetic screening of this patient population. Between 1976 and 1997, 165 patients were identified with PRCC by retrospective chart review. Fifty-nine of 133 surviving patients agreed to provide a family history, a blood specimen, and informed consent for genetic research. DNA was isolated from peripheral blood leukocytes. Denaturing high-performance liquid chromatography (DHPLC) followed by genomic sequencing was performed on eight exons of the MET proto-oncogene, including exons 5-7 of the extracellular domain, exon 14, and exons 16-19 of the tyrosine kinase domain. The 59 patients in this study included 49 men and 10 women with a mean age at diagnosis of 61 years. Bilateral and/or multifocal disease was present in 13 cases (22%). No germline mutations were detected in the studied exons of the MET proto-oncogene (exons previously reported to contain deleterious mutations in familial PRCC). No pathological MET proto-oncogene germline mutations were identified in 59 patients with PRCC. The germline mutation rate in this clinic-based population of individuals with PRCC approaches 0% (CI = 0-6.18). MET proto-oncogene germline mutation screening does not appear to be clinically indicated in patients with PRCC without additional evidence for a genetic predisposition (positive family history, unusual age at onset, bilateral disease).  相似文献   
10.
Wines ME  Shi Y  Lindor M  Holdener BC 《Genomics》2000,68(3):322-329
The mesoderm development (mesd) functional interval is essential for primitive streak formation and mesoderm induction. Mesd is defined by overlapping albino (c) deletions on chromosome 7. We have constructed a bacterial artificial chromosome (BAC) contig that spans the mesd functional region. BAC end-sequence identifies three segments that recognize novel expressed sequences. Localization of the proximal breakpoints from Del(7)Tyr(c-3YPSd) and Del(7)Tyr(c-112K) within the contig defines a deletion interval of 310-350 kb that is essential for mesd function. Importantly, using BAC transgene rescue, we define a 75-kb mesd critical region containing at least one expressed sequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号