首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   5篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有56条查询结果,搜索用时 78 毫秒
1.
Small angle neutron scattering (SANS) method was used to study lysozyme solutions, with particular interest in an understanding of the crystallization process at the initial stage. It is found that (1) in the unsaturated solution, the protein molecules aggregate with a continuous increase in size when NaCl concentration is increased, and (2) in the supersaturated solution, an irreversible change, superimposed on the former process, occurs when the supersaturation is realized. These facts indicate the usefulness of SANS in detecting changes of protein molecules in solution on the nanometer scale. The reliability of the SANS results are indicated by (1) comparing them with those of small angle X-ray scattering (SAXS), and (2) comparing the effect of D(2)O and H(2)O as solvent. Since the interparticle interaction is essential in the crystallization process and a simple Guinier plot analysis is not allowed, a more rigorous framework of analyzing data with interference function is developed, through which both average interparticle distance and particle size are estimated.  相似文献   
2.
Proper insertion, folding and assembly of functional proteins in biological membranes are key processes to warrant activity of a living cell. Here, we present a novel approach to trace folding and insertion of a nascent membrane protein leaving the ribosome and penetrating the bilayer. Surface Enhanced IR Absorption Spectroscopy selectively monitored insertion and folding of membrane proteins during cell-free expression in a label-free and non-invasive manner. Protein synthesis was performed in an optical cell containing a prism covered with a thin gold film with nanodiscs on top, providing an artificial lipid bilayer for folding. In a pilot experiment, the folding pathway of bacteriorhodopsin via various secondary and tertiary structures was visualized. Thus, a methodology is established with which the folding reaction of other more complex membrane proteins can be observed during protein biosynthesis (in situ and in operando) at molecular resolution.  相似文献   
3.
The LOV1 domain of the blue light Phot1-receptor (phototropin homolog) from Chlamydomonas reinhardtii has been studied by vibrational spectroscopy. The FMN modes of the dark state of LOV1 were identified by preresonance Raman spectroscopy and assigned to molecular vibrations. By comparing the blue-light-induced FTIR difference spectrum with the preresonance Raman spectrum, most of the differences are due to FMN modes. Thus, we exclude large backbone changes of the protein that might occur during the phototransformation of the dark state LOV1-447 into the putative signaling state LOV1-390. Still, the presence of smaller amide difference bands cannot be excluded but may be masked by overlapping FMN modes. The band at 2567 cm(-1) is assigned to the S-H stretching vibration of C57, the residue that forms the transient thio-adduct with the chromophore FMN. The occurrence of this band is evidence that C57 is protonated in the dark state of LOV1. This result challenges conclusions from the homologous LOV2 domain from oat that the thiolate of the corresponding cysteine is the reactive species.  相似文献   
4.
New hyperthermostable aminopeptidase from the hyperthermophilic archaeon Pyrococcus horikoshii has acylamino acid releasing (deblocking) activity for acyl (blocked) peptides. Such an enzyme can be used for N-terminal sequencing of acyl peptides. To clarify the active site of the deblocking aminopeptidase, we prepared three mutants in which one of the three possible active site amino acid residues (Asp or Glu) was replaced with their amide derivatives. Activity and cobalt ion dependence of these mutants were examined and compared with those of the native enzyme. The results suggest that all the three possible residues (Asp173, Glu205, and Glu206) participate in the catalytic activity through binding with the cobalt ion.  相似文献   
5.
We observed low-frequency Raman spectra of tetragonal lysozyme crystals and DNA films, with varying water content of the samples. The spectra are fitted well by sums of relaxation modes and damped harmonic oscillators in the region from approximately 1 cm(-1) to 250 cm(-1). The relaxation modes are due to crystal water, and the distribution of relaxation times is determined. In wet samples, the relaxation time of a small part of the water molecules is a little longer than that of bulk water. The relaxation time of a considerable part of the crystal water, which belongs mainly to the secondary hydration shell, is an order of magnitude longer than that of bulk water. Furthermore, the relaxation time of some water molecules in the primary hydration shell of semidry samples is shorter than we expected. Thus we have shown that low-frequency Raman measurements combined with properly oriented samples can give specific information on the dynamics of hydration water in the ps range. On the other hand, we concluded, based on polarized Raman spectra of lysozyme crystals, that the damped oscillators correspond to essentially intramolecular vibrational modes.  相似文献   
6.

Background

At our institute, a chemoradioselection strategy has been used to select patients for organ preservation on the basis of response to an initial 30–40 Gy concurrent chemoradiotherapy (CCRT). Patients with a favorable response (i.e., chemoradioselected; CRS) have demonstrated better outcomes than those with an unfavorable response (i.e., nonchemoradioselected; N-CRS). Successful targeting of molecules that attenuate the efficacy of chmoradioselection may improve results. Thus, the aim of this study was to evaluate the association of a novel cancer stem cell (CSC) marker, CD44 variant 9 (CD44v9), with cellular refractoriness to chemoradioselection in advanced head and neck squamous cell carcinoma (HNSCC).

Materials and Methods

Through a medical chart search, 102 patients with advanced HNSCC treated with chemoradioselection from 1997 to 2008 were enrolled. According to our algorithm, 30 patients were CRC following induction CCRT and 72 patients were N-CRS. Using the conventional immunohistochemical technique, biopsy specimens and surgically removed tumor specimens were immunostained with the anti-CD44v9 specific antibodies.

Results

The intrinsic expression levels of CD44v9 in the biopsy specimens did not correlate with the chemoradioselection and patient survival. However, in N-CRS patients, the CD44v9-positive group demonstrated significantly (P = 0.008) worse prognosis, than the CD44v9-negative group. Multivariate analyses demonstrated that among four candidate factors (T, N, response to CCRT, and CD44v9), CD44v9 positivity (HR: 3.145, 95% CI: 1.235–8.008, P = 0.0163) was significantly correlated with the poor prognosis, along with advanced N stage (HR: 3.525, 95% CI: 1.054–9.060, P = 0.0228). Furthermore, the survival rate of the CD44v9-induced group was significantly (P = 0.04) worse than the CD44v9-non-induced group.

Conclusions

CCRT-induced CD44v9-expressing CSCs appear to be a major hurdle to chemoradioselection. CD44v9-targeting seems to be a promising strategy to enhance the efficacy of chemoradioselection and consequent organ preservation and survival.  相似文献   
7.
8.
O-Phosphoserine sulfhydrylase is a new enzyme found in a hyperthermophilic archaeon, Aeropyrum pernix K1. This enzyme catalyzes a novel cysteine synthetic reaction from O-phospho-l-serine and sulfide. The crystal structure of the enzyme was determined at 2.0A resolution using the method of multi-wavelength anomalous dispersion. A monomer consists of three domains, including an N-terminal domain with a new alpha/beta fold. The topology folds of the middle and C-terminal domains were similar to those of the O-acetylserine sulfhydrylase-A from Salmonella typhimurium and the cystathionine beta-synthase from human. The cofactor, pyridoxal 5'-phosphate, is bound in a cleft between the middle and C-terminal domains through a covalent linkage to Lys127. Based on the structure determined, O-phospho-l-serine could be rationally modeled into the active site of the enzyme. An enzyme-substrate complex model and a mutation experiment revealed that Arg297, unique to hyperthermophilic archaea, is one of the most crucial residues for O-phosphoserine sulfhydrylation activity. There are more hydrophobic areas and less electric charges at the dimer interface, compared to the S.typhimurium O-acetylserine sulfhydrylase.  相似文献   
9.
Various Pacific Island populations have experienced a marked increase in the prevalence of obesity in past decades. This study examined the association of a promoter polymorphism of the leptin gene (LEP), G-2548A (rs7799039), and two non-synonymous single nucleotide polymorphisms of the leptin receptor gene (LEPR), K109R (rs1137100) and Q223R (rs1137101), with body weight, body mass index (BMI) and obesity (BMI ≥ 30) in Pacific Islanders. A total of 745 Austronesian (AN)-speaking participants were analyzed after adjusting for age, gender, and population differences. The results revealed that carriers of the 223Q alleles of LEPR had significantly higher body weight (P = 0.0009) and BMI (P = 0.0022) than non-carriers (i.e., 223R homozygotes); furthermore, the 223Q carriers also had a significantly higher risk of obesity in comparison to non-carriers (P = 0.0222). The other two polymorphisms, G-2548A and K109R, were associated with neither body weight, BMI, nor obesity. The 223Q allele was widely found among the AN-speaking study subjects, thus suggesting that the LEPR Q223R polymorphism is one of the factors contributing to the high prevalence of obesity in the Pacific Island populations.  相似文献   
10.
The synthesis and biological evaluation of new potent opioid receptor-like 1 (ORL1) antagonists are presented. Conversion of the thioether linkage of the prototype [It is reported prior to this communication as a consecutive series.: Kobayashi, K.; Kato, T.; Yamamoto, I.; Shimizu, A.; Mizutani, S.; Asai, M.; Kawamoto, H.; Ito, S.; Yoshizumi, T.; Hirayama, M.; Ozaki, S.; Ohta, H.; Okamoto, O. Bioorg. Med. Chem. Lett., in press] to the carbonyl linker effectively reduces susceptibility to P-glycoprotein (P-gp) efflux. This finding led to the identification of 2-cyclohexylcarbonylbenzimizole analogue 7c, which exhibited potent ORL1 activity, excellent selectivity over other receptors and ion channels, and poor susceptibility to P-gp. Compound 7c also showed satisfactory pharmacokinetic profiles and brain penetrability in laboratory animals. Furthermore, 7c showed good in vivo antagonism. Hence, 7c was selected as a clinical candidate for a brain-penetrable ORL1 antagonist.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号