首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   17篇
  398篇
  2022年   2篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   15篇
  2014年   17篇
  2013年   25篇
  2012年   15篇
  2011年   17篇
  2010年   26篇
  2009年   27篇
  2008年   22篇
  2007年   15篇
  2006年   14篇
  2005年   14篇
  2004年   15篇
  2003年   4篇
  2002年   5篇
  2001年   8篇
  2000年   6篇
  1999年   4篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   12篇
  1987年   1篇
  1986年   5篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   18篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1975年   3篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
排序方式: 共有398条查询结果,搜索用时 15 毫秒
1.
Use of E. coli strains with phenotypes Rec+ and Rec- asrecipients in intergenera crosses confirmed the supposition put forward by the authors formerly that new chromosomal markers in transconjugantes originated due to Psuedomonas aeruginosa. These chromosomal markers were transferred together with plasmid R conditioning the conjugation, and maintained without being built-into E. coli chromosome. Between the arg+ marker and the plasmid R18 there existed labile physical connection demonstrable only under definite conditions of recombinant selection.  相似文献   
2.
The experimental data of previous papers are considered as a basis for the hypothesis about intraneuronal system controlled by cyclic nucleotides and changing the membrane permeability upon creating the generatory potential. This system is suggested to be an extremal molecular regulator in which the price of action per single operation approximates the physical limit. The electro-mechanical intraneuronal system is capable of solving multidimensional physical problems by means of molecular "digital" hypersound holo-gram coded by DNA molecular text which is an image of functions of target search.  相似文献   
3.
4.
5.
6.
Beyond its role in cellular homeostasis, autophagy plays anti‐ and promicrobial roles in host–microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well‐described in animals, the extent to which xenophagy contributes to plant–bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type‐III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense‐related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense‐related autophagy in plant–bacteria interactions.  相似文献   
7.
Vesicle trafficking plays an important role in cell division, establishment of cell polarity, and translation of environmental cues to developmental responses. However, the molecular mechanisms regulating vesicle trafficking remain poorly understood. Here, we report that the evolutionarily conserved caspase-related protease separase (EXTRA SPINDLE POLES [ESP]) is required for the establishment of cell polarity and cytokinesis in Arabidopsis thaliana. At the cellular level, separase colocalizes with microtubules and RabA2a (for RAS GENES FROM RAT BRAINA2a) GTPase-positive structures. Separase facilitates polar targeting of the auxin efflux carrier PIN-FORMED2 (PIN2) to the rootward side of the root cortex cells. Plants with the radially swollen4 (rsw4) allele with compromised separase activity, in addition to mitotic failure, display isotropic cell growth, perturbation of auxin gradient formation, slower gravitropic response in roots, and cytokinetic failure. Measurements of the dynamics of vesicle markers on the cell plate revealed an overall reduction of the delivery rates of KNOLLE and RabA2a GTPase in separase-deficient roots. Furthermore, dissociation of the clathrin light chain, a protein that plays major role in the formation of coated vesicles, was slower in rsw4 than in the control. Our results demonstrate that separase is a key regulator of vesicle trafficking, which is indispensable for cytokinesis and the establishment of cell polarity.  相似文献   
8.
9.
The molecular integrity of the active site of phytases from fungi is critical for maintaining phytase function as efficient catalytic machines. In this study, the molecular dynamics (MD) of two monomers of phytase B from Aspergillus niger, the disulfide intact monomer (NAP) and a monomer with broken disulfide bonds (RAP), were simulated to explore the conformational basis of the loss of catalytic activity when disulfide bonds are broken. The simulations indicated that the overall secondary and tertiary structures of the two monomers were nearly identical but differed in some crucial secondary–structural elements in the vicinity of the disulfide bonds and catalytic site. Disulfide bonds stabilize the β-sheet that contains residue Arg66 of the active site and destabilize the α-helix that contains the catalytic residue Asp319. This stabilization and destabilization lead to changes in the shape of the active–site pocket. Functionally important hydrogen bonds and atomic fluctuations in the catalytic pocket change during the RAP simulation. None of the disulfide bonds are in or near the catalytic pocket but are most likely essential for maintaining the native conformation of the catalytic site.

Abbreviations

PhyB - 2.5 pH acid phophatese from Aspergillus niger, NAP - disulphide intact monomer of Phytase B, RAP - disulphide reduced monomer of Phytase B, Rg - radius of gyration, RMSD - root mean square deviation, MD - molecular dynamics.  相似文献   
10.

Background:

Vascular growth is a prerequisite for adipose tissue (AT) development and expansion. Some AT cytokines and hormones have effects on vascular development, like vascular endothelial growth factor (VEGF‐A), angiopoietin (ANG‐1), ANG‐2 and angiopoietin‐like protein‐4 (ANGPTL‐4).

Methods:

In this study, the independent and combined effects of diet‐induced weight loss and exercise on AT gene expression and proteins levels of those angiogenic factors were investigated. Seventy‐nine obese males and females were randomized to: 1. Exercise‐only (EXO; 12‐weeks exercise without diet‐restriction), 2. Hypocaloric diet (DIO; 8‐weeks very low energy diet (VLED) + 4‐weeks weight maintenance diet) and 3. Hypocaloric diet and exercise (DEX; 8‐weeks VLED + 4‐weeks weight maintenance diet combined with exercise throughout the 12 weeks). Blood samples and fat biopsies were taken before and after the intervention.

Results:

Weight loss was 3.5 kg in the EXO group and 12.3 kg in the DIO and DEX groups. VEGF‐A protein was non‐significantly reduced in the weight loss groups. ANG‐1 protein levels were significantly reduced 22‐25% after all three interventions (P < 0.01). The ANG‐1/ANG‐2 ratio was also decreased in all three groups (P < 0.05) by 27‐38%. ANGPTL‐4 was increased in the EXO group (15%, P < 0.05) and 9% (P < 0.05) in the DIO group. VEGF‐A, ANG‐1, and ANGPTL‐4 were all expressed in human AT, but only ANGPTL‐4 was influenced by the interventions.

Conclusions:

Our data show that serum VEGF‐A, ANG‐1, ANG‐2, and ANGPTL‐4 levels are influenced by weight changes, indicating the involvement of these factors in the obese state. Moreover, it was found that weight loss generally was associated with a reduced angiogenic activity in the circulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号