首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   9篇
  国内免费   11篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2015年   8篇
  2014年   10篇
  2013年   11篇
  2012年   9篇
  2011年   16篇
  2010年   19篇
  2009年   14篇
  2008年   16篇
  2007年   13篇
  2006年   11篇
  2005年   13篇
  2004年   10篇
  2003年   6篇
  2002年   12篇
  2001年   1篇
  1999年   2篇
  1995年   1篇
  1994年   1篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
1.
A microarray (LungCaGxE), based on Illumina BeadChip technology, was developed for high-resolution genotyping of genes that are candidates for involvement in environmentally driven aspects of lung cancer oncogenesis and/or tumor growth. The iterative array design process illustrates techniques for managing large panels of candidate genes and optimizing marker selection, aided by a new bioinformatics pipeline component, Tagger Batch Assistant. The LungCaGxE platform targets 298 genes and the proximal genetic regions in which they are located, using ∼13,000 DNA single nucleotide polymorphisms (SNPs), which include haplotype linkage markers with a minimum allele frequency of 1% and additional specifically targeted SNPs, for which published reports have indicated functional consequences or associations with lung cancer or other smoking-related diseases. The overall assay conversion rate was 98.9%; 99.0% of markers with a minimum Illumina design score of 0.6 successfully generated allele calls using genomic DNA from a study population of 1873 lung-cancer patients and controls.  相似文献   
2.
Cardiac hypertrophy is a common pathological change frequently accompanied by chronic hypertension and myocardial infarction. Nevertheless, the pathophysiological mechanisms of cardiac hypertrophy have never been elucidated. Recent studies indicated that miR‐103 expression was significantly decreased in heart failure patients. However, less is known about the role of miR‐103 in cardiac hypertrophy. The present study was designed to investigate the relationship between miR‐103 and the mechanism of pressure overload‐induced cardiac hypertrophy. TRPV3 protein, cardiac hypertrophy marker proteins (BNP and β‐MHC) and autophagy associated proteins (Beclin‐1 and LC3‐II) were up‐regulated, as well as, miR‐103 expression and autophagy associated proteins (p62) were down‐regulated in cardiac hypertrophy models in vivo and in vitro respectively. Further results indicated that silencing TRPV3 or forcing overexpression of miR‐103 could dramatically inhibit cell surface area, relative fluorescence intensity of Ca2+ signal and the expressions of BNP, β‐MHC, Beclin‐1 and LC3‐II, but promote p62 expression. Moreover, TRPV3 protein was decreased in neonatal rat ventricular myocyte transfected with miR‐103, but increased by AMO‐103. Co‐transfection of the miR‐103 with the luciferase reporter vector into HEK293 cells caused a sharp decrease in luciferase activity compared with transfection of the luciferase vector alone. The miR‐103‐induced depression of luciferase activity was rescued by an AMO‐103. These findings suggested that TRPV3 was a direct target of miR‐103. In conclusion, miR‐103 could attenuate cardiomyocyte hypertrophy partly by reducing cardiac autophagy activity through the targeted inhibition of TRPV3 signalling in the pressure‐overloaded rat hearts.  相似文献   
3.
Autophagy is a conserved method of quality control in which cytoplasmic contents are degraded via lysosomes. Lipophagy, a form of selective autophagy and a novel type of lipid metabolism, has recently received much attention. Lipophagy is defined as the autophagic degradation of intracellular lipid droplets (LDs). Although much remains unknown, lipophagy appears to play a significant role in many organisms, cell types, metabolic states, and diseases. It participates in the regulation of intracellular lipid storage, intracellular free lipid levels (e.g., fatty acids), and energy balance. However, it remains unclear how intracellular lipids regulate autophagy. Impaired lipophagy can cause cells to become sensitive to death stimuli and may be responsible for the onset of a variety of diseases, including nonalcoholic fatty liver disease and metabolic syndrome. Like autophagy, the role of lipophagy in cancer is poorly understood, although analysis of specific autophagy receptors has helped to expand the diversity of chemotherapeutic targets. These studies have stimulated increasing interest in the role of lipophagy in the pathogenesis and treatment of cancer and other human diseases.Subject terms: Autophagy, Mechanisms of disease  相似文献   
4.
5.
Heterotrimeric G proteins mediate cell growth and differentiation by coupling cell surface receptors to intracellular effector enzymes. The G-protein alpha subunit, Galpha(16), and its murine homologue Galpha(15), are expressed specifically in hematopoietic cells and their expression is highly regulated during differentiation of normal and leukemic cells. In this study, we examined the phosphorylation of Galpha(15)/Galpha(16) and its role in receptor and effector coupling. We observed a PMA-stimulated intact cell phosphorylation of Galpha(15) in COS7 cells transfected with Galpha(15) and protein kinase Calpha (PKCalpha), and phosphorylation of endogenous Galpha(16) in HL60 cells. We also showed that peptides derived from the two G-proteins were phosphorylated in vitro using purified brain PKC. Furthermore, we identified the putative phosphorylation site and showed that mutation or deletion of this PKC phosphorylation site inhibited phospholipase C (PLC) activation. The behavior of double mutants with the constitutively active G-protein mutation (QL-mutant) and mutation in the putative phosphorylation site suggests that the phosphorylation site of Galpha(15/16) is essential for receptor-coupled activation of PLC, but not for direct interaction of the G-protein with PLC-beta.  相似文献   
6.
Endothelial cell (EC) migration, cell-cell adhesion, and the formation of branching point structures are considered hallmarks of angiogenesis; however, the underlying mechanisms of these processes are not well understood. Lipid phosphate phosphatase 3 (LPP3) is a recently described p120-catenin-associated integrin ligand localized in adherens junctions (AJs) of ECs. Here, we tested the hypothesis that LPP3 stimulates β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) to induce EC migration and formation of branching point structures. In subconfluent ECs, LPP3 induced expression of fibronectin via β-catenin/LEF-1 signaling in a phosphatase and tensin homologue (PTEN)-dependent manner. In confluent ECs, depletion of p120-catenin restored LPP3-mediated β-catenin/LEF-1 signaling. Depletion of LPP3 resulted in destabilization of β-catenin, which in turn reduced fibronectin synthesis and deposition, which resulted in inhibition of EC migration. Accordingly, reexpression of β-catenin but not p120-catenin in LPP3-depleted ECs restored de novo synthesis of fibronectin, which mediated EC migration and formation of branching point structures. In confluent ECs, however, a fraction of p120-catenin associated and colocalized with LPP3 at the plasma membrane, via the C-terminal cytoplasmic domain, thereby limiting the ability of LPP3 to stimulate β-catenin/LEF-1 signaling. Thus, our study identified a key role for LPP3 in orchestrating PTEN-mediated β-catenin/LEF-1 signaling in EC migration, cell-cell adhesion, and formation of branching point structures.Angiogenesis, the formation of new blood vessels, involves several well-coordinated cellular processes, including endothelial cell (EC) migration, synthesis and deposition of extracellular matrix proteins, such as fibronectin, cell-cell adhesion, and formation of branching point structures (1-3, 19, 33); however, less is known about the underlying mechanisms of these processes (6, 8, 12, 14, 16, 17). For example, adherens junctions (AJs), which mediate cell-cell adhesion between ECs, may be involved in limiting the extent of cell migration (2, 14, 38, 40). VE-cadherin, a protein found in AJs, is a single-pass transmembrane polypeptide responsible for calcium-dependent homophilic interactions through its extracellular domains (2, 38, 40). The VE-cadherin cytoplasmic domain interacts with the Armadillo domain-containing proteins, β-catenin, γ-catenin (plakoglobin), and p120-catenin (p120ctn) (2, 15, 38, 40, 43). Genetic and biochemical evidence documents a crucial role of β-catenin in regulating cell adhesion as well as proliferation secondary to the central position of β-catenin in the Wnt signaling pathway (13, 16, 25, 31, 44). In addition, the juxtamembrane protein p120ctn regulates AJ stability via binding to VE-cadherin (2, 7, 9, 15, 21, 28, 32, 43). The absence of regulation or inappropriate regulation of β-catenin and VE-cadherin functions is linked to cardiovascular disease and tumor progression (2, 6).We previously identified lipid phosphate phosphatase 3 (LPP3), also known as phosphatidic acid phosphatase 2b (PAP2b), in a functional assay of angiogenesis (18, 19, 41, 42). LPP3 not only exhibits lipid phosphatase activity but also functions as a cell-associated integrin ligand (18, 19, 35, 41, 42). The known LPPs (LPP1, LPP2, and LPP3) (20-23) are six transmembrane domain-containing plasma membrane-bound enzymes that dephosphorylate sphingosine-1-phosphate (S1P) and its structural homologues, and thus, these phosphatases generate lipid mediators (4, 5, 23, 35, 39). All LPPs, which contain a single N-glycosylation site and a putative lipid phosphatase motif, are situated such that their N and C termini are within the cell (4, 5, 22, 23, 35, 39). Only the LPP3 isoform contains an Arg-Gly-Asp (RGD) sequence in the second extracellular loop, and this RGD sequence enables LPP3 to bind integrins (18, 19, 22). Transfection experiments with green fluorescent protein (GFP)-tagged LPP1 and LPP3 showed that LPP1 is apically sorted, whereas LPP3 colocalized with E-cadherin at cell-cell contact sites with other Madin-Darby canine kidney (MDCK) cells (22). Mutagenesis and domain swapping experiments established that LPP1 contains an apical targeting signal sequence (FDKTRL) in its N-terminal segment. In contrast, LPP3 contains a dityrosine (109Y/110Y) basolateral sorting motif (22). Interestingly, conventional deletion of Lpp3 is embryonic lethal, since the Lpp3 gene plays a critical role in extraembryonic vasculogenesis independent of its lipid phosphatase activity (11). In addition, an LPP3-neutralizing antibody was shown to prevent cell-cell interactions (19, 42) and angiogenesis (42). Here, we addressed the hypothesis that LPP3 plays a key role in EC migration, cell-cell adhesion, and formation of branching point structures by stimulating β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) signaling.  相似文献   
7.
Podosomes are transient cell surface structures essential for degradation of extracellular matrix during cell invasion. Protein kinase C (PKC) is involved in the regulation of podosome formation; however, the roles of individual PKC isoforms in podosome formation and proteolytic function are largely unknown. Recently, we reported that PDBu, a PKC activator, induced podosome formation in normal human bronchial epithelial cells. Here, we demonstrate that phorbol-12,13-dibutyrate (PDBu)-induced podosome formation is mainly mediated through redistribution of conventional PKCs, especially PKCα, from the cytosol to the podosomes. Interestingly, although blocking atypical PKCζ did not affect PDBu-induced podosome formation, it significantly reduced matrix degradation at podosomes. Inhibition of PKCζ reduced recruitment of matrix metalloprotease 9 (MMP-9) to podosomes and its release and activation. Downregulation of MMP-9 by small interfering RNA (siRNA) or neutralization antibody also significantly reduced matrix degradation. The regulatory effects of PKCζ on matrix degradation and recruitment of MMP-9 to podosomes were PKCζ kinase activity dependent. PDBu-induced recruitment of PKCζ and MMP-9 to podosomes was blocked by inhibition of novel PKC with rottlerin or PKCδ siRNA. Our data suggest that multiple PKC isozymes form a signaling cascade that controls podosome formation and dynamics and MMP-9 recruitment, release, and activation in a coordinated fashion.  相似文献   
8.
The abundantly expressed carcinoembryonic antigen (CEA) on several cancer types is an attractive target for antibody-directed therapy. However, CEA is also present in some normal tissues. Here, we produced a dual functioning protein, designated as CAtin that exhibits both specific binding and killing functions, by fusing a tumor-specific apoptosis-inducing molecular Apoptin to C-terminus of an anti-CEA single-chain disulfide-stabilized Fv antibody (scdsFv). The CAtin proteins were expressed in Escherichia coli (E. coli), refolded and purified on an immobilized Ni2+ affinity chromatography column. SDS–PAGE and Western blotting revealed that the recombinant protein was well-expressed and the yield was approximately 250 mg/L. We demonstrated by flow cytometry and immunofluorescence assays that CAtin could bind specifically to human colon carcinoma cells (LoVo), but almost not to human uterine cervix (Hela). The results suggest that CAtin is active and specific toward CEA-positive cells and may potentially be used in CEA-targeted cancer therapy.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号