首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36367篇
  免费   3349篇
  国内免费   4060篇
  2024年   93篇
  2023年   472篇
  2022年   1094篇
  2021年   1983篇
  2020年   1446篇
  2019年   1692篇
  2018年   1613篇
  2017年   1235篇
  2016年   1625篇
  2015年   2293篇
  2014年   2840篇
  2013年   2918篇
  2012年   3501篇
  2011年   3093篇
  2010年   1957篇
  2009年   1801篇
  2008年   2009篇
  2007年   1794篇
  2006年   1515篇
  2005年   1385篇
  2004年   1174篇
  2003年   1036篇
  2002年   983篇
  2001年   596篇
  2000年   546篇
  1999年   493篇
  1998年   335篇
  1997年   294篇
  1996年   286篇
  1995年   223篇
  1994年   245篇
  1993年   148篇
  1992年   167篇
  1991年   167篇
  1990年   137篇
  1989年   126篇
  1988年   77篇
  1987年   89篇
  1986年   68篇
  1985年   45篇
  1984年   49篇
  1983年   34篇
  1982年   32篇
  1981年   18篇
  1980年   4篇
  1979年   6篇
  1978年   4篇
  1977年   8篇
  1976年   4篇
  1950年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
4.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
5.
6.
7.
In Australia, in the past, pasture legumes were rotated mainly with cereals, but increasingly these rotations now involve pasture legumes with a wider range of crops, including legumes. This increasing frequency of the leguminous host in the rotation system may be associated with increased root rots in legumes in the current pasture-crop rotations. The primary aim of this study was to see whether the pathogenicity on pasture legumes of strains of Rhizoctonia solani sourced from lupins and cereals (common crops in rotation with pastures) is associated with increased incidence of root rots in pasture legumes in the disease conducive sandy soils of the Mediterranean regions of southern Australia. The second aim was to determine sources of resistance among newly introduced pasture legumes to R. solani strains originating from rotational crops as this would reduce the impact of disease in the pasture phase. Fifteen pasture legume genotypes were assessed for their resistance/susceptibility to five different zymogram groups (ZG) of the root rot pathogen R. solani under glasshouse conditions. Of the R. solani groups tested, ZG1–5 and ZG1–4 (both known to be pathogenic on cereals and legumes) overall, caused the most severe root disease across the genotypes tested, significantly more than ZG6 (known to be pathogenic on legumes), in turn significantly >ZG4 (known to be pathogenic on legumes) which in turn was >ZG11 (known to be pathogenic on legumes including tropical species). Overall, Ornithopus sativus Brot. cvs Cadiz and Margurita, Trifolium michelianum Savi. cvs Paradana and Frontier and T. purpureum Loisel. cv. Electro showed a significant level of resistance to root rot caused by R. solani ZG11 (root disease scores ≤1.2 on a 1–3 scale where 3 = maximum disease severity) while O. sativus cvs Cadiz and Erica showed a significant level of resistance to root rot caused by R. solani ZG4 (scores ≤1.2). O. compressus L. cvs Charano and Frontier, O. sativus cv. Erica, and T. purpureum cv. Electro showed some useful resistance to root rot caused by R. solani ZG6 (scores ≤1.8). This is the first time that cvs Cadiz, Electro, Frontier, Margurita and Paradana have been recognised for their levels of resistance to root rot caused by R. solani ZG11; and similarly for cvs Cadiz and Erica against ZG4; and for cvs Charano, Erica, and Electro against ZG6. These genotypes with resistance may also serve as useful sources of resistance in pasture legume breeding programs and also could potentially be exploited directly into areas where other rotation crops are affected by these R. solani strains. None of the tested genotypes showed useful resistance to R. solani ZG1–4 (scores ≥2.0) or ZG1–5 (scores ≥2.5). This study demonstrates the relative potential of the various R. solani ZG strains, and particularly ZG1–4, ZG1–5, ZG4 and ZG6 to attack legume pastures and pose a significant threat to non-pasture crop species susceptible to these strains grown in rotation with these pasture legumes. Significantly, the cross-pathogenicity of these strains could result in the continuous build-up of inoculum of these strains that may seriously affect the productivity eventually of legumes in all rotations. In particular, when choosing pasture legumes as rotation crops, caution needs to be exercised so that the cultivars deployed are those with the best resistance to the R. solani ZGs most likely to be prevalent at the location.  相似文献   
8.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
9.
Molecular dynamics (MD) simulations of phosphatidylinositol (4,5)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) bilayers indicate that the inositol rings are tilted ∼40° with respect to the bilayer surface, as compared with 17° for the P-N vector of POPC. Multiple minima were obtained for the ring twist (analogous to roll for an airplane). The phosphates at position 1 of PIP2 and PIP3 are within an Ångström of the plane formed by the phosphates of POPC; lipids in the surrounding shell are depressed by 0.5-0.8 Å, but otherwise the phosphoinositides do not substantially perturb the bilayer. Finite size artifacts for ion distributions are apparent for systems of ∼26 waters/lipid, but, based on simulations with a fourfold increase of the aqueous phase, the phosphoinositide positions and orientations do not show significant size effects. Electrostatic potentials evaluated from Poisson-Boltzmann (PB) calculations show a strong dependence of potential height and ring orientation, with the maxima on the −25 mV surfaces (17.1 ± 0.1 Å for PIP2 and 19.4 ± 0.3 Å for PIP3) occurring near the most populated orientations from MD. These surfaces are well above the background height of 10 Å estimated for negatively charged cell membranes, as would be expected for lipids involved in cellular signaling. PB calculations on microscopically flat bilayers yield similar maxima as the MD-based (microscopically rough) systems, but show less fine structure and do not clearly indicate the most probable regions. Electrostatic free energies of interaction with pentalysine are also similar for the rough and flat systems. These results support the utility of a rigid/flat bilayer model for PB-based studies of PIP2 and PIP3 as long as the orientations are judiciously chosen.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号