首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   30篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   7篇
  2016年   6篇
  2015年   5篇
  2014年   6篇
  2013年   10篇
  2012年   14篇
  2011年   21篇
  2010年   12篇
  2009年   16篇
  2008年   20篇
  2007年   16篇
  2006年   20篇
  2005年   19篇
  2004年   14篇
  2003年   15篇
  2002年   12篇
  2001年   8篇
  2000年   5篇
  1999年   11篇
  1998年   6篇
  1997年   6篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   10篇
  1987年   3篇
  1985年   3篇
  1983年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1974年   2篇
  1972年   2篇
  1970年   2篇
  1969年   3篇
  1967年   3篇
  1955年   2篇
  1949年   1篇
  1934年   2篇
  1913年   1篇
  1906年   1篇
  1905年   1篇
排序方式: 共有345条查询结果,搜索用时 15 毫秒
1.
In this paper we demonstrate the study of plant water balanceby the non-invasive measurement of tissue water content andwater flow using proton nuclear magnetic resonance (NMR). Sapvelocity and flux were measured independently in the presenceof an excess of stationary tissue water. The instrumentationdescribed allows automated and unattended measurement of flow-and water content-variables in a well-defined region of theplant over periods of several days, with a time resolution betweensuccessive measurements of c. 5 s. Using this apparatus theeffect of changes in light intensity (day/night rhythm) andrelative humidity on stem tissue water content as well as onthe velocity and flux of xylem sap in the stem were investigatedin a cucumber plant. The results are in agreement with predictionsfrom a simple model for plant water balance, which is basedon water potential, flow rate and resistance to flow. As longas only transpiration is varied, flow rate and water content(or potential) are affected in opposite ways as demonstratedin this paper. In contrast, the model predicts that changesin uptake (resulting from changes in, for example, root resistance)will induce changes in water content and flow in the same direction.An experimental verification of this prediction is given ina subsequent paper, where, in addition, the NMR results arecompared to those obtained with a dendrometer. Key words: Water balance model, Cucumis sativus L., flow, water content, NMR, water balance measurement  相似文献   
2.
Forced expression of the myogenic regulatory gene MyoD in many types of cultured cells initiates their conversion into skeletal muscle. It is not known, however, if MyoD expression serves to activate all or part of the skeletal muscle program in vivo during animal development, nor is it known how limiting the influences of cellular environment may be on the regulatory effects of MyoD. To begin to address these issues, we have produced transgenic mice which express MyoD in developing heart, where neither MyoD nor its three close relatives--myogenin, Myf-5, and MRF4/herculin/Myf-6--are normally expressed. The resulting gross phenotype in offspring from multiple, independent transgenic founders includes abnormal heart morphology and ultimately leads to death. At the molecular level, affected hearts exhibit activation of skeletal muscle-specific regulatory as well as structural genes. We conclude that MyoD is able to initiate the program that leads to skeletal muscle differentiation during mouse development, even in the presence of the ongoing cardiac differentiation program. Thus, targeted misexpression of this tissue-specific regulator during mammalian embryogenesis can activate, either directly or indirectly, a diverse set of genes normally restricted to a different cell lineage and a different cellular environment.  相似文献   
3.
In vertebrate development, a prominent feature of several cell lineages is the coupling of cell cycle regulation with terminal differentiation. We have investigated the basis of this relationship in the skeletal muscle lineage by studying the effects of the proliferation-associated regulator, c-myc, on the differentiation of MyoD-initiated myoblasts. Transient cotransfection assays in NIH 3T3 cells using MyoD and c-myc expression vectors demonstrated c-myc suppression of MyoD-initiated differentiation. A stable cell system was also developed in which MyoD expression was constitutive, while myc levels could be elevated conditionally. Induction of this conditional c-myc suppressed myogenesis effectively, even in the presence of MyoD. c-myc suppression also prevented up-regulation of a relative of MyoD, myogenin, which is normally expressed at the onset of differentiation in all muscle cell lines examined and may be essential for differentiation. Additional experiments tested whether failure to differentiate in the presence of myc could be overcome by providing myogenin ectopically. Cotransfection of c-myc with myogenin, MyoD, or a mixture of myogenin and MyoD showed that neither myogenin alone nor myogenin plus MyoD together could bypass the c-myc block. The effects of c-myc were further dissected by showing that c-myc can inhibit differentiation independently of Id, a negative regulator of muscle differentiation. These results lead us to propose that c-myc and Id constitute independent negative regulators of muscle differentiation, while myogenin and any of the other three related myogenic factors (MyoD, Myf-5, and MRF4/herculin/Myf-6) act as positive regulators.  相似文献   
4.
Bacteriophage T4 codes for a DNA-[N6-adenine] methyltransferase (Dam) which recognizes primarily the sequence GATC in both cytosine- and hydroxymethylcytosine-containing DNA. Hypermethylating mutants, damh, exhibit a relaxation in sequence specificity, that is, they are readily able to methylate non-canonical sites. We have determined that the damh mutation produces a single amino acid change (Pro126 to Ser126) in a region of homology (III) shared by three DNA-adenine methyltransferases; viz, T4 Dam, Escherichia coli Dam, and the DpnII modification enzyme of Streptococcus pneumoniae. We also describe another mutant, damc, which methylates GATC in cytosine-containing DNA, but not in hydroxymethylcytosine-containing DNA. This mutation also alters a single amino acid (Phe127 to Val127). These results implicate homology region III as a domain involved in DNA sequence recognition. The effect of several different amino acids at residue 126 was examined by creating a polypeptide chain terminating codon at that position and comparing the methylation capability of partially purified enzymes produced in the presence of various suppressors. No enzyme activity is detected when phenylalanine, glutamic acid, or histidine is inserted at position 126. However, insertion of alanine, cysteine, or glycine at residue 126 produces enzymatic activity similar to Damh.  相似文献   
5.
Wine vinegar is a product obtained from wine acidification which contains at least 5% by wt. of acetic acid, in general without any additives or colorings.
Aspects studied in this work include: the determination of the taste group thresholds (geometric mean of the individual best-estimate thresholds "BET") of two different acids (citric and acetic acids) in aqueous solution and spanish vinegars produced from table and sherry wines. The results obtained suggest that wine vinegar can be considered something more than just an acidulant agent.
In order to evaluate differences among wine vinegars, discriminant tests for twenty-five spanish vinegars (sherry, table and flavored vinegars) were applied. Six of the twelve attributes freely chosen by assessors allowed grouping of the spanish wine vinegars according to their sensory aspects.  相似文献   
6.
Two laboratories tested four different brands of alkaline 2% glutaraldehyde sterilants by the Association of Official Analytical Chemists sporicidal test. Each laboratory found survival of Clostridium sporogenes spores on spore-labeled unglazed porcelain penicylinders (cylinders) to vary from test to test, and survival did not always correlate with increasing sterilant exposure time. These results were consistent with a theory that there may be random conditions within the test that prevent the sterilant from contacting all spores. Further studies indicated that the prior history of the unglazed porcelain cylinders and whether the C. sporogenes culture grown in egg-meat media had been processed (homogenized) to eliminate visible pieces of egg-meat media were important factors affecting the results and repeatability of this test.  相似文献   
7.
When exponentially growing KB cells were deprived of arginine, cell multiplication ceased after 12 h but viability was maintained throughout the experimental period (42-48 h). Although tritiated thymidine ([(3)H]TdR) incorporation into acid-insoluble material declined to 5 percent of the initial rate, the fraction of cells engaged in DNA synthesis, determined by autoradiography, remained constant throughout the starvation period and approximately equal to the synthesizing fraction in exponentially growing controls (40 percent). Continous [(3)H]TdR-labeling indicated that 80 percent of the arginine-starved cells incorporated (3)H at some time during a 48-h deprivation period. Thus, some cells ceased DNA synthesis, whereas some initially nonsynthesizing cells initiated DNA synthesis during starvation. Flow microfluorometric profiles of distribution of cellular DNA contents at the end of the starvation period indicated that essentially no cells had a 4c or G2 complement. If arginine was restored after 30 h of starvation, cultures resumed active, largely asynchronous division after a 16-h lag. Autoradiographs of metaphase figures from cultures continuously labeled with [(3)H]TdR after restoration indicated that all cells in the culture underwent DNA synthesis before dividing. It was concluded that the majority of cells in arginine-starved cultures are arrested in neither a normal G1 nor G2. It is proposed that for an exponential culture, i.e. from most positions in the cell cycle, inhibition of cell growth after arginine with withdrawal centers on the ability of cells to complete replication of their DNA.  相似文献   
8.
Understanding the structure and dynamics of cortical connectivity is vital to understanding cortical function. Experimental data strongly suggest that local recurrent connectivity in the cortex is significantly non-random, exhibiting, for example, above-chance bidirectionality and an overrepresentation of certain triangular motifs. Additional evidence suggests a significant distance dependency to connectivity over a local scale of a few hundred microns, and particular patterns of synaptic turnover dynamics, including a heavy-tailed distribution of synaptic efficacies, a power law distribution of synaptic lifetimes, and a tendency for stronger synapses to be more stable over time. Understanding how many of these non-random features simultaneously arise would provide valuable insights into the development and function of the cortex. While previous work has modeled some of the individual features of local cortical wiring, there is no model that begins to comprehensively account for all of them. We present a spiking network model of a rodent Layer 5 cortical slice which, via the interactions of a few simple biologically motivated intrinsic, synaptic, and structural plasticity mechanisms, qualitatively reproduces these non-random effects when combined with simple topological constraints. Our model suggests that mechanisms of self-organization arising from a small number of plasticity rules provide a parsimonious explanation for numerous experimentally observed non-random features of recurrent cortical wiring. Interestingly, similar mechanisms have been shown to endow recurrent networks with powerful learning abilities, suggesting that these mechanism are central to understanding both structure and function of cortical synaptic wiring.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号