首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
排序方式: 共有9条查询结果,搜索用时 78 毫秒
1
1.
The polymerization of proteins can create newly active and large bio‐macromolecular assemblies that exhibit unique functionalities depending on the properties of the building block proteins and the protein units in polymers. Herein, the first enzymatic polymerization of horseradish peroxidase (HRP) is reported. Recombinant HRPs fused with a tyrosine‐tag (Y‐tag) through a flexible linker at the N‐ and/or Ctermini are expressed in silkworm, Bombyx mori. Trametes sp. laccase (TL) is used to activate the tyrosine of Y‐tagged HRPs with molecular O2 to form a tyrosyl‐free radical, which initiates the tyrosine coupling reaction between the HRP units. A covalent dityrosine linkage is also formed through a HRP‐catalyzed self‐crosslinking reaction in the presence of H2O2. The addition of H2O2 in the self‐polymerization of Y‐tagged HRPs results in lower activity of the HRP polymers, whereas TL provides site‐selectivity, mild reaction conditions and maintains the activity of the polymeric products. The cocrosslinking of Y‐tagged HRPs and HRP‐protein G (Y‐HRP‐pG) units catalyzed by TL shows a higher signal in enzyme‐linked immunosorbent assay (ELISA) than the genetically pG‐fused HRP, Y‐HRP‐pG, and its polymers. This new enzymatic polymerization of HRP promises to provide highly active and functionalized polymers for biomedical applications and diagnostics probes.  相似文献   
2.
Herein, we demonstrate the control of protein heteroconjugation via a tyrosyl coupling reaction by using electrostatic interaction. Aspartic acid and arginine were introduced to a tyrosine containing peptide tag (Y-tag) to provide electrostatic charge. Designed negatively or positively charged Y-tags were tethered to the C-terminus of Escherichia coli alkaline phosphatase (BAP) and streptavidin (SA), and these model proteins were subjected to horseradish peroxidase (HRP) treatment. The negatively charged Y-tags showed low reactivity due to repulsive interactions between the Y-tags with the negatively charged BAP and SA. In contrast, the positively charged Y-tags showed high reactivity, indicating that the electrostatic interaction between Y-tags and proteins significantly affects the tyrosyl radical mediated protein cross-linking. From the heteroconjugation reaction of BAP and SA, the SA with the positively charged Y-tags exhibited favorable cross-linking toward negatively charged BAP, and the BAP-SA conjugates prepared from BAP with GY-tag (GGGGY) and SA with RYR-tag (RRYRR) had the best performance on a biotin-coated microplate. Encompassing the reactive tyrosine residue with arginine residues reduced the reactivity against HRP, enabling the modulation of cross-linking reaction rates with BAP-GY. Thus, by introducing a proper electrostatic interaction to Y-tags, it is possible to kinetically control the heteroconjugation behavior of proteins, thereby maximizing the functions of protein heteroconjugates.  相似文献   
3.
Peptide tags containing tyrosines (Y-tag) were introduced at the C-terminus of a hyperthermophilic enzyme, alkaline phosphatase from Pyrococcus furiosus (PfuAP). Immobilization of the recombinant PfuAPs onto water-in-oil-in-water (W/O/W) type microcapsules was performed by an in situ polymerization method. All the recombinant PfuAPs prepared in this study were quantitatively immobilized onto microcapsules. The PfuAP-immobilized microcapsules showed no significant loss of enzymatic activity until the 5th round of assays. This result implies that the recombinant PfuAPs were covalently immobilized onto microcapsules. Immobilized PfuAP tagged with a Y-tag having the sequence GGYYY exhibited approximately a twofold higher catalytic activity compared with the wild-type PfuAP. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
4.
Treatment of a hyperthermophilic enzyme, alkaline phosphatase from Pyrococcus furiosus (PfuAP), with EDTA completely deactivated PfuAP, indicating that the presence of one or more divalent metal ions is essential for its catalytic activity. Subsequent addition of various divalent metal ions to the apoprotein recovered the enzymatic activity and, in particular, the addition of Co(II) resulted in an over 50-fold increase in activity compared with PfuAP before EDTA treatment. Intriguingly, PfuAP with Co(II) exhibited weaker stability toward heat treatment, suggesting that Co2+ destabilizes the tertiary structure of PfuAP at high temperature.  相似文献   
5.
As a therapeutic treatment, recombinant human basic fibroblast growth factor (rhbFGF) is usually employed in tissue regeneration, and as an essential component in culture medium for maintaining the induced pluripotent stem (iPS) cell and embryonic stem (ES) cell in an undifferentiated state. Therefore, a large amount of biologically active rhbFGF is required. In this study, silkworm-baculovirus expression vector system (silkworm-BEVS) is employed to achieve a high productivity of recombinant rhbFGF with two small affinity tags (His-tag and STREP-tag) at the N or C-terminus. It is observed that rhbFGF with 30?K signal peptide of silkworm were successfully expressed but are not sufficiently secreted into the culture medium of cultured insect cells. Then we purified the N- or C-tagged intracellular rhbFGF protein and obtained a yield of about 0.7?mg/larva and 1.2?mg/larva, respectively. Although the final yield of the C-tagged rhbFGF is higher than that of the N-tagged, rhbFGF with N-tag demonstrated promising and comparable biological activity, which is evaluated through a mammalian cell proliferation assay. Taken together, these results indicate that silkworm-BEVS could contribute to the mass-production of the biologically active rhbFGF for medical uses.  相似文献   
6.
Combining different proteins can integrate the functions of each protein to produce novel protein conjugates with wider ranges of applications. We have previously introduced a peptide containing tyrosine residues (Y-tag) at the C-terminus of Escherichia coli alkaline phosphatase (BAP). The tyrosine residues in the Y-tag were efficiently recognized by horseradish peroxidase (HRP) and were site-specifically cross-linked with each other to yield BAP homoconjugates. In this study, the HRP-catalyzed tyrosine coupling reaction was used for protein heteroconjugation. Streptavidin (SA) was selected as the conjugation partner for BAP. The Y-tag (GGGGY) was genetically introduced to the C-terminus of SA. Prior to heteroconjugation, the reactivity of the Y-tagged SA was examined. The Y-tagged SA cross-linked to form an SA homoconjugate upon HRP treatment, whereas wild-type SA remained essentially intact. In the heteroconjugation reaction of BAP and SA, the Y-tagged BAP and SA were efficiently cross-linked with each other upon HRP treatment. The functions of the BAP-SA conjugates were evaluated by measuring the BAP enzymatic activity on a biotin-coated plate. The BAP-SA conjugate tethered to the plate showed BAP enzymatic activity, indicating that both BAP and SA retained their functions following heteroconjugation. The BAP-SA conjugate prepared from both Y-tagged BAP and SA showed the highest enzymatic activity on the biotin-coated plates. This result illustrates the advantage of the protein conjugation reaction in which multiple numbers of proteins can be conjugated at the same time.  相似文献   
7.
8.
Protein modification methods represent fundamental techniques that are applicable in many fields. In this study, a site-specific protein cross-linking based on the oxidative tyrosine coupling reaction was demonstrated. In the presence of horseradish peroxidase (HRP) and H(2)O(2), tyrosine residues undergo one-electron oxidation reactions and form radicals in their phenolic moieties, and these species subsequently react with each other to form dimers or further react to generate polymers. Here, a peptide-tag containing a tyrosine residue(s) (Y-tag, of which the amino acid sequences were either GGGGY or GGYYY) was genetically introduced at the C-terminus of a model protein, Escherichia coli alkaline phosphatase (BAP). Following the incubation of recombinant BAPs with HRP and H(2)O(2), Y-tagged BAPs were efficiently cross-linked with each other, whereas wild-type BAP did not undergo cross-linking, indicating that the tyrosine residues in the Y-tags were recognized by HRP as the substrates. To determine the site-specificity of the cross-linking reaction, the Y-tag was selectively removed by thrombin digestion. The resultant BAP without the Y-tag showed no reactivity in the presence of HRP and H(2)O(2). Conversely, Y-tagged BAPs cross-linked by HRP treatment were almost completely digested into monomeric BAP units following incubation with the protease. Moreover, cross-linked Y-tagged BAPs retained ~95% of their native enzymatic activity. These results show that HRP catalyzed the site-specific cross-linking of BAPs through tyrosine residues positioned in the C-terminal Y-tag. The site-selective enzymatic oxidative tyrosine coupling reaction should offer a practical option for site-specific and covalent protein modifications.  相似文献   
9.
Neurochemical Research - Mutations in alpha/beta-hydrolase domain containing (ABHD) 12 gene, which encodes lysophosphatidylserine (LysoPS) lipase, cause the neurodegenerative disease PHARC...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号