首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有30条查询结果,搜索用时 968 毫秒
1.
2.
Adduct I (lambda(max) at approximately 430 nm) formed in the reaction of 2-hydrazinopyridine (2HP) and the TPQ cofactor of wild-type Escherichia coli copper amine oxidase (WT-ECAO) is stable at neutral pH, 25 degrees C, but slowly converts to another spectroscopically distinct species with a lambda(max) at approximately 530 nm (adduct II) at pH 9.1. The conversion was accelerated either by incubation of the reaction mixture at 60 degrees C or by increasing the pH (>13). The active site base mutant forms of ECAO (D383N and D383E) showed spectral changes similar to WT when incubated at 60 degrees C. By contrast, in the Y369F mutant adduct I was not stable at pH 7, 25 degrees C, and gradually converted to adduct II, and this rate of conversion was faster at pH 9. To identify the nature of adduct II, we have studied the effects of pH and divalent cations on the UV-vis and resonance Raman spectroscopic properties of the model compound of adduct I (2). Strikingly, it was found that addition of Cu2+ to 2 at pH 7 gave a product (3) that exhibited almost identical spectroscopic signatures to adduct II. The X-ray crystal structure of 3 shows that it is the copper-coordinated form of 2, where the +2 charge of copper is neutralized by a double deprotonation of 2. These results led to the proposal that adduct II in the enzyme is TPQ-2HP that has migrated onto the active site Cu2+. The X-ray crystal structure of Y369F adduct II confirmed this assignment. Resonance Raman and EPR spectroscopy showed that adduct II in WT-ECAO is identical to that seen in Y369F. This study clearly demonstrates that the hydrogen-bonding interaction between O4 of TPQ and the conserved Tyr (Y369) is important in controlling the position and orientation of TPQ in the catalytic cycle, including optimal orientation for reactivity with substrate amines.  相似文献   
3.
Histamine dehydrogenase (HADH) isolated from Nocardioides simplex catalyzes the oxidative deamination of histamine to imidazole acetaldehyde. HADH is highly specific for histamine, and we are interested in understanding the recognition mode of histamine in its active site. We describe the first crystal structure of a recombinant form of HADH (HADH) to 2.7-Å resolution. HADH is a homodimer, where each 76-kDa subunit contains an iron-sulfur cluster ([4Fe-4S]2+) and a 6-S-cysteinyl flavin mononucleotide (6-S-Cys-FMN) as redox cofactors. The overall structure of HADH is very similar to that of trimethylamine dehydrogenase (TMADH) from Methylotrophus methylophilus (bacterium W3A1). However, some distinct differences between the structure of HADH and TMADH have been found. Tyr60, Trp264, and Trp355 provide the framework for the “aromatic bowl” that serves as a trimethylamine-binding site in TMADH is comprised of Gln65, Trp267, and Asp358, respectively, in HADH. The surface Tyr442 that is essential in transferring electrons to electron-transfer flavoprotein (ETF) in TMADH is not conserved in HADH. We use this structure to propose the binding mode for histamine in the active site of HADH through molecular modeling and to compare the interactions to those observed for other histamine-binding proteins whose structures are known.  相似文献   
4.
In skeletal and cardiac muscles, troponin (Tn), which resides on the thin filament, senses a change in intracellular Ca2+ concentration. Tn is composed of TnC, TnI, and TnT. Ca2+ binding to the regulatory domain of TnC removes the inhibitory effect by TnI on the contraction. The inhibitory region of cardiac TnI spans from residue 138 to 149. Upon Ca2+ activation, the inhibitory region is believed to be released from actin, thus triggering actin-activation of myosin ATPase. In this study, we created a series of Ala-substitution mutants of cTnI to delineate the functional contribution of each amino acid in the inhibitory region to myofilament regulation. We found that most of the point mutations in the inhibitory region reduced the ATPase activity in the presence of Ca2+, which suggests the same region also acts as an activator of the ATPase. The thin filaments can also be activated by strong myosin head (S1)-actin interactions. The binding of N-ethylmaleimide-treated myosin subfragment 1 (NEM-S1) to actin filaments mimics such strong interactions. Interestingly, in the absence of Ca2+ NEM-S1-induced activation of S1 ATPase was significantly less with the thin filaments containing TnI(T144A) than that with the wild-type TnI. However, in the presence of Ca2+, there was little difference in the activation of ATPase activity between these preparations.Striated muscle thin filaments exist in equilibrium among multiple states. Ca2+ binding to the regulatory domain of troponin C (TnC)2 along the thin filaments and strong cross-bridge interactions with thick filaments are thought to shift the equilibrium. Ca2+ binds to the regulatory domain of TnC, which regulates the interaction of troponin I (TnI) with actin-tropomyosin (Tm) and TnC (13). In the thin filaments, the inhibitory region of TnI (residues 104–115 of rabbit fast skeletal TnI (fsTnI) or 138–149 of mouse cardiac TnI (cTnI)) undergoes a structural transition depending on the Ca2+ state of TnC (4, 5). In the absence of Ca2+ at the regulatory site(s) of TnC, the inhibitory region interacts with actin to prevent activation of myosin ATPase activity. When Ca2+ binds to the regulatory site(s) of TnC, the switch region of TnI, which is located at the C terminus of the inhibitory region, interacts with the newly exposed hydrophobic patch of the N-terminal regulatory domain of TnC (68). This interaction causes the removal of the inhibitory region and the second actin-Tm binding region of TnI from the actin surface and allows actin to interact with myosin. In the presence of Ca2+ at the regulatory sites of TnC, the inhibitory region and the central helical region of TnC are mutually stabilized, according to the recent x-ray crystal structure of the core domain of the fsTn complex (9). The sequence variations in the N-terminal and the C-terminal regions of TnT, another component of the Tn complex, are known to alter the Ca2+ sensitivity of myofilament activity (10, 11). In addition, TnT is involved in the Ca2+-dependent interaction of the Tn complex with actin-Tm (12). However, the molecular mechanism whereby TnT participates in the Ca2+ regulation has not been established.There is evidence supporting the idea that each amino acid residue in the inhibitory region of TnI contributes differently and to a different degree to myofilament activities. One example is genetic mutations and phosphorylation of amino acid residues in the inhibitory region of cardiac TnI that cause the modification of myofilament activities. In hypertrophic or restrictive cardiomyopathy-linked mutations found in the inhibitory region, such as R142Q, L145Q, and R146G/Q/W mutations (mouse cTnI sequence number), induce Ca2+ sensitization of myofilament activities and an increase in ATPase/tension at low [Ca2+] (13, 14). Recently we reported that thin filaments reconstituted with R146G or R146W mutant cTnI bind Ca2+ tighter than those with cTnI(wt) (15). The Ca2+ sensitization may occur as a result of the destabilization of the off-state of the thin filaments due to the mutation introduced into the actin-Tm-interacting residue, i.e. Arg-146, of cTnI. On the other hand, Thr-144 is phosphorylated by protein kinase C (PKC) specifically, although the consequence of the PKC-dependent phosphorylation of Thr-144 has not yet been clearly defined. Pseudophosphorylation of Thr-144 was shown to cause Ca2+ desensitization in in vitro motility assays (16), whereas there is a report that indicates phosphorylation of Thr-144 sensitizes skinned cardiomyocytes to Ca2+ (17). Furthermore, Tachampa et al. reported that Thr-144 of cTnI is important for length-dependent activation of skinned cardiac muscle (18). Thus in each case presented above, a specific change in a single amino acid in the inhibitory region of TnI induced different and divergent effects on myofilament activities.Our aim of this study is to assess the functional contributions of the individual amino acid residues in the inhibitory region to the regulatory function. To assess the functional roles of the individual amino acid residues systematically, we used Ala scanning (19, 20). Ala substitution deletes all the interactions made by atoms beyond β-C yet does not alter the peptide backbone conformation, unless it is applied to Gly or Pro. Ala is one of the most abundant amino acids and is found in both buried and exposed positions. We found that almost the entire minimum inhibitory region of cTnI we investigated (Fig. 1) is important for both the inhibition and activation. Our data also indicate that the C-terminal part of the inhibitory region destabilizes the active state of the thin filaments. We also found that Thr-144 is involved in NEM-S1-dependent activation of ATPase activity in the absence of Ca2+.Open in a separate windowFIGURE 1.Inhibitory region of TnI. A, sequence comparison of the minimum inhibitory region from various vertebrates. The amino acid residues that are different from fsTnI are colored green in cardiac sequences. Note the amino acid sequence of the inhibitory region is highly conserved. Also the amino acid sequences of the minimum inhibitory region of the mutants we investigated in this study are shown. B, crystal structure of the inhibitory region and its surrounding region in chicken fsTn complex in the Ca2+-bound form (PDB: 1YTZ). TnC, pink; TnT, light blue; TnI, gray. The segment, corresponding to residues 143–149 of mouse cTnI, is colored red.  相似文献   
5.

Background

SNP rs5770917 located between CPT1B and CHKB, and HLA-DRB1*1501-DQB1*0602 haplotype were previously identified as susceptibility loci for narcolepsy with cataplexy. This study was conducted in order to investigate whether these genetic markers are associated with Japanese CNS hypersomnias (essential hypersomnia: EHS) other than narcolepsy with cataplexy.

Principal Findings

EHS was significantly associated with SNP rs5770917 (Pallele = 3.6×10−3; OR = 1.56; 95% c.i.: 1.12–2.15) and HLA-DRB1*1501-DQB1*0602 haplotype (P positivity = 9.2×10−11; OR = 3.97; 95% c.i.: 2.55–6.19). No interaction between the two markers (SNP rs5770917 and HLA-DRB1*1501-DQB1*0602 haplotype) was observed in EHS.

Conclusion

CPT1B, CHKB and HLA are candidates for susceptibility to CNS hypersomnias (EHS), as well as narcolepsy with cataplexy.  相似文献   
6.
2-Hydrazinopyridine (2HP) is an irreversible inhibitor of copper amine oxidases (CAOs). 2HP reacts directly at the C5 position of the TPQ cofactor, yielding an intense chromophore with lambda(max) approximately 430 nm (adduct I) in Escherichia coli amine oxidase (ECAO). The adduct I form of wild type (WT-ECAO) was assigned as a hydrazone on the basis of the X-ray crystal structure. The hydrazone adduct appears to be stabilized by two key hydrogen-bonding interactions between the TPQ-2HP moiety and two active site residues: the catalytic base (D383) and the conserved tyrosine residue (Y369). In this work, we have synthesized a model compound (2) for adduct I from the reaction of a TPQ model compound (1) and 2HP. NMR spectroscopy and X-ray crystallography show that 2 exists predominantly as the azo form (lambda(max) at 414 nm). Comparison of the UV-vis and resonance Raman spectra of 2 with adduct I in WT, D383E, D383N, and Y369F forms of ECAO revealed that adduct I in WT and D383N is a tautomeric mixture where the hydrazone form is favored. In D383E adduct I, the equilibrium is further shifted in favor of the hydrazone form. UV-vis spectroscopic pH titrations of adduct I in WT, D383N, D383E, and 2 confirmed that D383 in WT adduct I is protonated at pH 7 and stabilizes the hydrazone tautomer by a short hydrogen-bonding interaction. The deprotonation of D383 (pKa approximately 9.7) in adduct I resulted in conversion of adduct I to the azo tautomer with a blue shift of the lambda(max) to 420 nm, close to that of 2. In contrast, adduct I in D383N and D383E is stable and did not show any pH-dependent spectral changes. In Y369F, adduct I was not stable and gradually converted into a new species with lambda(max) at approximately 530 nm (adduct II). A detailed mechanism for the adduct I formation in WT has been proposed that is consistent with the mechanism proposed for the oxidation of substrate by CAOs but addresses some key differences in the active site chemistry of hydrazine inhibitors and substrate amines.  相似文献   
7.
The interaction of the isolated EF-hand domain of phospholipase C delta1 with arachidonic acid (AA) was characterized using circular dichroism (CD) and fluorescence spectroscopy. The far-UV CD spectral changes indicate that AA binds to the EF domain. The near-UV CD spectra suggest that the orientations of aromatic residues in the peptide are affected when AA binds to the protein. The fluorescence of the single intrinsic tryptophan located in EF1 was enhanced by the addition of dodecylmaltoside (DDM) and AA suggesting that this region of the protein is involved in hydrophobic interactions. In the presence of a low concentration of DDM it was found that AA induced a change in fluorescence resonance energy transfer, which is indicative of a conformational change. The lipid induced conformational change may play a role in calcium binding because the isolated EF-hand domain did not bind Ca2+ in the absence of lipids, but Ca2+-dependent changes in the intrinsic tryptophan emission were observed when free fatty acids were present. These studies identify specific EF-hand domains as allosteric regulatory domains that require hydrophobic ligands such as lipids.  相似文献   
8.
α-Tropomyosin (α-TM) has a conserved, charged Asp-137 residue located in the hydrophobic core of its coiled-coil structure, which is unusual in that the residue is found at a position typically occupied by a hydrophobic residue. Asp-137 is thought to destabilize the coiled-coil and so impart structural flexibility to the molecule, which is believed to be crucial for its function in the heart. A previous in vitro study indicated that the conversion of Asp-137 to a more typical canonical Leu alters flexibility of TM and affects its in vitro regulatory functions. However, the physiological importance of the residue Asp-137 and altered TM flexibility is unknown. In this study, we further analyzed structural properties of the α-TM-D137L variant and addressed the physiological importance of TM flexibility in cardiac function in studies with a novel transgenic mouse model expressing α-TM-D137L in the heart. Our NMR spectroscopy data indicated that the presence of D137L introduced long range rearrangements in TM structure. Differential scanning calorimetry measurements demonstrated that α-TM-D137L has higher thermal stability compared with α-TM, which correlated with decreased flexibility. Hearts of transgenic mice expressing α-TM-D137L showed systolic and diastolic dysfunction with decreased myofilament Ca2+ sensitivity and cardiomyocyte contractility without changes in intracellular Ca2+ transients or post-translational modifications of major myofilament proteins. We conclude that conversion of the highly conserved Asp-137 to Leu results in loss of flexibility of TM that is important for its regulatory functions in mouse hearts. Thus, our results provide insight into the link between flexibility of TM and its function in ejecting hearts.  相似文献   
9.
The striated muscle thin filament comprises actin, tropomyosin, and troponin. The Tn complex consists of three subunits, troponin C (TnC), troponin I (TnI), and troponin T (TnT). TnT may serve as a bridge between the Ca2+ sensor (TnC) and the actin filament. In the short helix preceding the IT-arm region, H1(T2), there are known dilated cardiomyopathy-linked mutations (among them R205L). Thus we hypothesized that there is an element in this short helix that plays an important role in regulating the muscle contraction, especially in Ca2+ activation. We mutated Arg-205 and several other amino acid residues within and near the H1(T2) helix. Utilizing an alanine replacement method to compare the effects of the mutations, the biochemical and mechanical impact on the actomyosin interaction was assessed by solution ATPase activity assay, an in vitro motility assay, and Ca2+ binding measurements. Ca2+ activation was markedly impaired by a point mutation of the highly conserved basic residue R205A, residing in the short helix H1(T2) of cTnT, whereas the mutations to nearby residues exhibited little effect on function. Interestingly, rigor activation was unchanged between the wild type and R205A TnT. In addition to the reduction in Ca2+ sensitivity observed in Ca2+ binding to the thin filament, myosin S1-ADP binding to the thin filament was significantly affected by the same mutation, which was also supported by a series of S1 concentration-dependent ATPase assays. These suggest that the R205A mutation alters function through reduction in the nature of cooperative binding of S1.  相似文献   
10.
2-Aminoethoxydiphenyl borate (2-APB) is used as a pharmacological tool because it antagonizes inositol 1,4,5-trisphosphate receptors and store-operated Ca2+ (SOC) channels, and activates some TRP channels. Recently, we reported that 2-APB enhanced the increase in cytotoxic [Ca2+]i, resulting in cell death under external acidic conditions in rat pheochromocytoma cell line PC12. However, the molecular mechanism and functional role of the 2-APB-induced Ca2+ influx in PC12 have not been clarified. In this study, to identify the possible target for the action of 2-APB we examined the pharmacological and molecular properties of [Ca2+]i and secretory responses to 2-APB under extracellular low pH conditions. 2-APB dose-dependently induced a [Ca2+]i increase and dopamine release, which were greatly enhanced by the external acidification (pH 6.5). [Ca2+]i and secretory responses to 2-APB at pH 6.5 were inhibited by the removal of extracellular Ca2+ and SOC channel blockers such as SK&F96365, La3+ and Gd3+. PC12 expressed all SOC channel molecules, Orai 1, Orai 2 and Orai 3. When we used an siRNA system, downregulation of Orai 3, but not Orai 1 and Orai 2, attenuated both [Ca2+]i and secretory responses to 2-APB. These results suggest that 2-APB evokes external acid-dependent increases of [Ca2+]i and dopamine release in PC12 through the activation of Orai 3. The present results indicate that 2-APB may be a useful pharmacological tool for Orai channel-related signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号