首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23240篇
  免费   1977篇
  国内免费   1709篇
  2024年   45篇
  2023年   204篇
  2022年   571篇
  2021年   836篇
  2020年   639篇
  2019年   843篇
  2018年   936篇
  2017年   677篇
  2016年   1027篇
  2015年   1498篇
  2014年   1724篇
  2013年   1763篇
  2012年   2264篇
  2011年   2066篇
  2010年   1301篇
  2009年   1164篇
  2008年   1493篇
  2007年   1391篇
  2006年   1120篇
  2005年   998篇
  2004年   869篇
  2003年   800篇
  2002年   693篇
  2001年   382篇
  2000年   346篇
  1999年   300篇
  1998年   169篇
  1997年   133篇
  1996年   83篇
  1995年   75篇
  1994年   65篇
  1993年   46篇
  1992年   64篇
  1991年   53篇
  1990年   52篇
  1989年   39篇
  1988年   26篇
  1987年   17篇
  1986年   19篇
  1985年   21篇
  1984年   12篇
  1983年   16篇
  1982年   9篇
  1981年   6篇
  1979年   6篇
  1976年   6篇
  1975年   8篇
  1974年   5篇
  1971年   5篇
  1969年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Secretion of levansucrase from Zymomonas mobilis in Escherichiacoli by glycine supplement was investigated. A significant amount of levansucrase (about 25% of total activity) was found in intact whole-cells. Cell fractionation experiments showed that levansucrase was found both in the periplasmic space and in the cytoplasmic fraction of E. coli. None or only trace amounts of levansucrase was detected in the extracellular culture broth at 24 h of cultivation and it accrued with the increasing concentration of glycine in the culture medium and duration of the culture period. Optimal glycine concentration for the maximum secretion of levansucrase was in the range of 0.8-1%, in which approximately 20-50% of levansucrase was released into the extracellular fraction at 24 h of cultivation, although glycine retarded the bacterial growth.  相似文献   
2.
3.
4.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
5.
In the present study, non‐thermal dielectric barrier discharge (DBD) plasma of induced structural changes of morin resulted in the isolation of one previously undescribed benzofuranone derivative, along with two known compounds. The chemical structures of these degradation products were elucidated by UV, NMR and FAB‐MS spectroscopic analyses. The isolated three compounds showed potent antioxidative activities in two different tests, with IC50 values in the range of 12.9–41.8 μm in the 2,2′‐azino‐bis (3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS+) radical scavenging activity, 19.0–71.9 μm for hydroxyl radical scavenging activity test. Furthermore, the new methoxylated benzofuranone exhibited enhancement of inhibitory effects against pancreatic lipase with an IC50 value of 90.7±1.6 μm , when compared to the parent morin. These results suggested that the degradation products isolated from plasma exposed morin might be beneficial for prevention of obesity and related diseases.  相似文献   
6.
Lactic acid produced from the cells is a potential cause of extra- and intracellular acidification. Due to scarce technical tools, lactic acid that leads to acidification could not be reduced and direct evidence of the relationship between metabolic lactate and apoptosis has not yet been elucidated. In this study, we designed a cellular pH regulation system in CHO cells by a reduction of lactate dehydrogenase (LDH) activity through LDH antisense mRNA expression. This inhibited lactate production and, therefore, acidification of the cytosol. Under HCO3(-)-buffered growth conditions, both the parent CHO cells and the engineered CHO cells maintained their extracellular pH and intracellular pH fairly well. However, upon acidification of the cytosol, only the parent CHO cells underwent apoptosis under HCO3(-)-free conditions. In fact, we observed a number of apoptosis-related events only in control cells, including mitochondrial dysfunction, cytochrome c release, and an increase in caspase-3 enzymatic activity.  相似文献   
7.
8.
The central regulator of adipogenesis, PPARγ, is a nuclear receptor that is linked to obesity and metabolic diseases. Here we report that MKRN1 is an E3 ligase of PPARγ that induces its ubiquitination, followed by proteasome-dependent degradation. Furthermore, we identified two lysine sites at 184 and 185 that appear to be targeted for ubiquitination by MKRN1. Stable overexpression of MKRN1 reduced PPARγ protein levels and suppressed adipocyte differentiation in 3T3-L1 and C3H10T1/2 cells. In contrast, MKRN1 depletion stimulated adipocyte differentiation in these cells. Finally, MKRN1 knockout MEFs showed an increased capacity for adipocyte differentiation compared with wild-type MEFs, with a concomitant increase of PPARγ and adipogenic markers. Together, these data indicate that MKRN1 is an elusive PPARγ E3 ligase that targets PPARγ for proteasomal degradation by ubiquitin-dependent pathways, and further depict MKRN1 as a novel target for diseases involving PPARγ.  相似文献   
9.
Sialidases are key virulence factors that remove sialic acid from the host cell surface glycan, unmasking receptors that facilitate bacterial adherence and colonisation. In this study, we developed potential agents for treating bacterial infections caused by Streptococcus pneumoniae Nan A that inhibit bacterial sialidase using Turmeric and curcumin analogues. Design, synthesis, and structure analysis relationship (SAR) studies have been also described. Evaluation of the synthesised derivatives demonstrated that compound 5e was the most potent inhibitor of S. pneumoniae sialidase (IC50?=?0.2?±?0.1?µM). This compound exhibited a 3.0-fold improvement in inhibitory activity over that of curcumin and displayed competitive inhibition. These results warrant further studies confirming the antipneumococcal activity 5e and indicated that curcumin derivatives could be potentially used to treat sepsis by bacterial infections.  相似文献   
10.
Advanced hepatic fibrosis therapy using drug-delivering nanoparticles is a relatively unexplored area. Angiotensin type 1 (AT1) receptor blockers such as losartan can be delivered to hepatic stellate cells (HSC), blocking their activation and thereby reducing fibrosis progression in the liver. In our study, we analyzed the possibility of utilizing drug-loaded vehicles such as hyaluronic acid (HA) micelles carrying losartan to attenuate HSC activation. Losartan, which exhibits inherent lipophilicity, was loaded into the hydrophobic core of HA micelles with a 19.5% drug loading efficiency. An advanced liver fibrosis model was developed using C3H/HeN mice subjected to 20 weeks of prolonged TAA/ethanol weight-adapted treatment. The cytocompatibility and cell uptake profile of losartan-HA micelles were studied in murine fibroblast cells (NIH3T3), human hepatic stellate cells (hHSC) and FL83B cells (hepatocyte cell line). The ability of these nanoparticles to attenuate HSC activation was studied in activated HSC cells based on alpha smooth muscle actin (α-sma) expression. Mice treated with oral losartan or losartan-HA micelles were analyzed for serum enzyme levels (ALT/AST, CK and LDH) and collagen deposition (hydroxyproline levels) in the liver. The accumulation of HA micelles was observed in fibrotic livers, which suggests increased delivery of losartan compared to normal livers and specific uptake by HSC. Active reduction of α-sma was observed in hHSC and the liver sections of losartan-HA micelle-treated mice. The serum enzyme levels and collagen deposition of losartan-HA micelle-treated mice was reduced significantly compared to the oral losartan group. Losartan-HA micelles demonstrated significant attenuation of hepatic fibrosis via an HSC-targeting mechanism in our in vitro and in vivo studies. These nanoparticles can be considered as an alternative therapy for liver fibrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号