首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The culture filtrate of Bacillus intermedius 3-19 was used for isolation by chromatography on CM-cellulose and Mono S columns of a proteinase that is secreted during the late stages of growth. The enzyme is irreversibly inhibited by the inhibitor of serine proteinases diisopropyl fluorophosphate, has two pH optima (7.2 and 9.5) for casein hydrolysis and one at pH 8.5 for Z-Glu-pNA hydrolysis. The molecular weight of the enzyme is 26.5 kD. The K(m) for Z-Glu-pNA hydrolysis is 0.5 mM. The temperature and pH dependences of the stability of the proteinase were studied. The enzyme was identified as glutamyl endopeptidase 2. The N-terminal sequence (10 residues) and amino acid composition of the enzyme were determined. The enzyme hydrolyzes Glu4-Gln5, Glu17-Asp18, and Cys11-Ser12 bonds in the oxidized A-chain of insulin and Glu13-Ala14, Glu21-Arg22, Cys7-Gly8, and Cys19-Gly20 bonds in the oxidized B-chain of insulin.  相似文献   
2.
3.
Various synthetic approaches to modified peptides with the C-terminal aldehyde group, capable of inhibiting a number of proteolytic enzymes belonging to the classes of thiol, serine, and aspartyl proteases, are considered. Both chemical methods, including solid phase peptide synthesis now widely used, and biocatalytic synthetic methods for obtaining these substances are discussed in detail.  相似文献   
4.
BackgroundThe Joint United Nations Programme on HIV and AIDS (UNAIDS) 90-90-90 targets have reinforced the importance of functioning laboratory services to ensure prompt diagnosis and to assess treatment efficacy. We surveyed the availability and utilization of technologies for HIV treatment monitoring and early infant diagnosis (EID) in World Health Organization (WHO) Member States.ConclusionThis is the first attempt to comprehensively gather information on HIV testing technology coverage in WHO Member States. The survey results suggest that major operational changes will need to be implemented, particularly in low- and middle-income countries, if the 90-90-90 targets are to be met.  相似文献   
5.
Two ways for semi-enzymatic preparation of the peptide aldehydes are proposed: (1) enzymatic acylation of amino alcohols with acyl peptide esters and subsequent chemical oxidation of the resulting peptide alcohols with DMSO/acetic anhydride mixture or (2) enzymatic acylation of the preliminarily obtained by a chemical route amino aldehyde semicarbazones. Subtilisin 72, serine proteinase with a broad specificity, distributed over macroporous silica, was used as a catalyst in both cases. Due to the practical absence of water in the reaction mixtures the yields of the products in both enzymatic reactions were nearly quantitative. The second way seems to be more attractive because all chemical stages were carried out with amino acid derivatives, far less valuable compounds than peptide ones. A series of peptide aldehydes of general formula Z-Ala-Ala-Xaa-al (where Xaa-al=leucinal, phenylalaninal, alaninal, valinal) was obtained. The inhibition parameters for these compounds, in the hydrolysis reactions of corresponding chromogenic substrates for subtilisin and -chymotrypsin, were determined.  相似文献   
6.
Type IV pili (T4Ps) are long cell surface filaments, essential for microcolony formation, tissue adherence, motility, transformation, and virulence by human pathogens. The enteropathogenic Escherichia coli bundle-forming pilus is a prototypic T4P assembled and powered by BfpD, a conserved GspE secretion superfamily ATPase held by inner-membrane proteins BfpC and BfpE, a GspF-family membrane protein. Although the T4P assembly machinery shares similarity with type II secretion (T2S) systems, the structural biochemistry of the T4P machine has been obscure. Here, we report the crystal structure of the two-domain BfpC cytoplasmic region (N-BfpC), responsible for binding to ATPase BfpD and membrane protein BfpE. The N-BfpC structure reveals a prominent central cleft between two α/β-domains. Despite negligible sequence similarity, N-BfpC resembles PilM, a cytoplasmic T4P biogenesis protein. Yet surprisingly, N-BfpC has far greater structural similarity to T2S component EpsL, with which it also shares virtually no sequence identity. The C-terminus of the cytoplasmic domain, which leads to the transmembrane segment not present in the crystal structure, exits N-BfpC at a positively charged surface that most likely interacts with the inner membrane, positioning its central cleft for interactions with other Bfp components. Point mutations in surface-exposed N-BfpC residues predicted to be critical for interactions among BfpC, BfpE, and BfpD disrupt pilus biogenesis without precluding interactions with BfpE and BfpD and without affecting BfpD ATPase activity. These results illuminate the relationships between T4P biogenesis and T2S systems, imply that subtle changes in component residue interactions can have profound effects on function and pathogenesis, and suggest that T4P systems may be disrupted by inhibitors that do not preclude component assembly.  相似文献   
7.
Homeodomains are helix-turn-helix type DNA-binding domains that exhibit sequence-specific DNA binding by insertion of their "recognition" alpha helices into the major groove and a short N-terminal arm into the adjacent minor groove without inducing substantial distortion of the DNA. The stability and DNA binding of four representatives of this family, MATalpha2, engrailed, Antennapedia, and NK-2, and truncated forms of the last two lacking their N-terminal arms have been studied by a combination of optical and microcalorimetric methods at different temperatures and salt concentrations. It was found that the stability of the free homeodomains in solution is rather low and, surprisingly, is reduced by the presence of the N-terminal arm for the Antennapedia and NK-2 domains. Their stabilities depend significantly upon the presence of salt: strongly for NaCl but less so for NaF, demonstrating specific interactions with chloride ions. The enthalpies of association of the homeodomains with their cognate DNAs are negative, at 20 degrees C varying only between -12 and -26 kJ/mol for the intact homeodomains, and the entropies of association are positive; i.e., DNA binding is both enthalpy- and entropy-driven. Analysis of the salt dependence of the association constants showed that the electrostatic component of the Gibbs energy of association resulting from the entropy of mixing of released ions dominates the binding, being about twice the magnitude of the nonelectrostatic component that results from dehydration of the protein/DNA interface, van der Waals interactions, and hydrogen bonding. A comparison of the effects of NaCl/KCl with NaF showed that homeodomain binding results in a release not only of cations from the DNA phosphates but also of chloride ions specifically associated with the proteins. The binding of the basic N-terminal arms in the minor groove is entirely enthalpic with a negative heat capacity effect, i.e., is due to sequence-specific formation of hydrogen bonds and hydrophobic interactions rather than electrostatic contacts with the DNA phosphates.  相似文献   
8.
Glu,Asp-specific endopeptidases represent a new subfamily of chymotrypsin-like proteolytic enzymes. These enzymes prefer Glu or Asp residues in the P1 position of the substrates. p-Nitroanilides of N-acylated di-, tri- and tetrapeptides with C-terminal glutamic or aspartic acid residues have been obtained. Acyl peptide p-nitroanilides were synthesized via acylation of glutamic or aspartic acid p-nitroanilides using methyl esters of the respective N-acylated peptides, generally with good yields. The reactions were performed in organic solvents using subtilisin 72 sorbed on silica as a catalyst. The kinetic parameters for the hydrolysis of these p-nitroanilides with proteinases from Bacillus intermedius and Bacillus licheniformis were determined.  相似文献   
9.
A gene encoding of glutamyl-specific endopeptidase precursor from Bacillus licheniformis has been cloned in Escherichia coli cells. The recombinant protein was expressed and accumulated as cytoplasmic insoluble inclusion bodies. Washed inclusion bodies were solubilized in 6 M guanidine-HCL in the presence of reducing agent. The following precursor renaturation was performed by fast frequent dilution method. The highest yield of the refolded protein was achieved at pH value of 8.5 and 4 degrees C. The renaturation process was accompanied by a gradual splitting of Glu(-48)/Thr(-47) and Glu(-13)/Lys(-12) peptide bonds. A 26-kDa protein proved to be an end product of in vitro renaturation. The mature glutamyl endopeptidase with a molecular mass of 25 kDa was obtained after a limited proteolysis of the 26-kDa protein was performed by subtilisin or trypsin. The 26-kDa protein was purified by gel filtration on a Superdex 75 column. Comparative characteristics of the thermal stability and catalytic properties of the 26-kDa and 25-kDa proteins showed that complete cleavage of the N-terminal pro-peptide by exogenous proteinase is necessary for a final packing and activation of the B. licheniformis glutamyl endopeptidase.  相似文献   
10.
To clarify the physical basis of DNA binding specificity, the thermodynamic properties and DNA binding and bending abilities of the DNA binding domains (DBDs) of sequence-specific (SS) and non-sequence-specific (NSS) HMG box proteins were studied with various DNA recognition sequences using micro-calorimetric and optical methods. Temperature-induced unfolding of the free DBDs showed that their structure does not represent a single cooperative unit but is subdivided into two (in the case of NSS DBDs) or three (in the case of SS DBDs) sub-domains, which differ in stability. Both types of HMG box, most particularly SS, are partially unfolded even at room temperature but association with DNA results in stabilization and cooperation of all the sub-domains. Binding and bending measurements using fluorescence spectroscopy over a range of ionic strengths, combined with calorimetric data, allowed separation of the electrostatic and non-electrostatic components of the Gibbs energies of DNA binding, yielding their enthalpic and entropic terms and an estimate of their contributions to DNA binding and bending. In all cases electrostatic interactions dominate non-electrostatic in the association of a DBD with DNA. The main difference between SS and NSS complexes is that SS are formed with an enthalpy close to zero and a negative heat capacity effect, while NSS are formed with a very positive enthalpy and a positive heat capacity effect. This indicates that formation of SS HMG box-DNA complexes is specified by extensive van der Waals contacts between apolar groups, i.e. a more tightly packed interface forms than in NSS complexes. The other principal difference is that DNA bending by the NSS DBDs is driven almost entirely by the electrostatic component of the binding energy, while DNA bending by SS DBDs is driven mainly by the non-electrostatic component. The basic extensions of both categories of HMG box play a similar role in DNA binding and bending, making solely electrostatic interactions with the DNA.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号