首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2023年   1篇
  2015年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
2.
Proteins do not function in isolation; it is their interactions with one another and also with other molecules (e.g. DNA, RNA) that mediate metabolic and signaling pathways, cellular processes, and organismal systems. Due to their central role in biological function, protein interactions also control the mechanisms leading to healthy and diseased states in organisms. Diseases are often caused by mutations affecting the binding interface or leading to biochemically dysfunctional allosteric changes in proteins. Therefore, protein interaction networks can elucidate the molecular basis of disease, which in turn can inform methods for prevention, diagnosis, and treatment. In this chapter, we will describe the computational approaches to predict and map networks of protein interactions and briefly review the experimental methods to detect protein interactions. We will describe the application of protein interaction networks as a translational approach to the study of human disease and evaluate the challenges faced by these approaches.

What to Learn in This Chapter

  • Experimental and computational methods to detect protein interactions
  • Protein networks and disease
  • Studying the genetic and molecular basis of disease
  • Using protein interactions to understand disease
This article is part of the “Translational Bioinformatics” collection for PLOS Computational Biology.
  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号