首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   294篇
  免费   35篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   5篇
  2019年   9篇
  2018年   8篇
  2017年   6篇
  2016年   11篇
  2015年   32篇
  2014年   30篇
  2013年   15篇
  2012年   42篇
  2011年   18篇
  2010年   14篇
  2009年   9篇
  2008年   24篇
  2007年   21篇
  2006年   24篇
  2005年   11篇
  2004年   7篇
  2003年   15篇
  2002年   6篇
  2001年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1981年   1篇
  1970年   1篇
排序方式: 共有329条查询结果,搜索用时 15 毫秒
1.
 Di-heme Pseudomonas stutzeri cytochrome c 4 has been characterized by electronic absorption and resonance Raman spectroscopies in the ferric and ferrous forms at pH 7.5 and at room temperature. The data indicate that the two hemes are inequivalent. It is proposed that the N-terminal contains a more relaxed heme as a consequence of the relative orientation of the methionine and histidine ligands with respect to the N-Fe-N directions of the heme plane. This causes a weakening of the Fe-S bond with concomitant partial dissociation of the methionine and the formation of an Fe-aquo bond. Heme group relaxation is further accompanied by less distortion of the heme group than that associated with cytochrome c, expansion of the "core" and a negative shift of the redox potential. Received: 17 December 1996 / Accepted: 6 March 1997  相似文献   
2.
According to classic theory, species'' population dynamics and distributions are less influenced by species interactions under harsh climatic conditions compared to under more benign climatic conditions. In alpine and boreal ecosystems in Fennoscandia, the cyclic dynamics of rodents strongly affect many other species, including ground-nesting birds such as ptarmigan. According to the ‘alternative prey hypothesis’ (APH), the densities of ground-nesting birds and rodents are positively associated due to predator–prey dynamics and prey-switching. However, it remains unclear how the strength of these predator-mediated interactions change along a climatic harshness gradient in comparison with the effects of climatic variation. We built a hierarchical Bayesian model to estimate the sensitivity of ptarmigan populations to interannual variation in climate and rodent occurrence across Norway during 2007–2017. Ptarmigan abundance was positively linked with rodent occurrence, consistent with the APH. Moreover, we found that the link between ptarmigan abundance and rodent dynamics was strongest in colder regions. Our study highlights how species interactions play an important role in population dynamics of species at high latitudes and suggests that they can become even more important in the most climatically harsh regions.  相似文献   
3.
In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome‐scale studies to characterize both model and non‐model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome‐wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site‐associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms—enabling the exploration of diverse evolutionary and conservation questions.  相似文献   
4.
Ecosystems - Herbivores are key drivers of vegetation dynamics in most ecosystems. However, the effect of high arctic herbivores on vegetation dynamics throughout a growing season is not well...  相似文献   
5.
6.
The genealogical relationship of human, chimpanzee, and gorilla varies along the genome. We develop a hidden Markov model (HMM) that incorporates this variation and relate the model parameters to population genetics quantities such as speciation times and ancestral population sizes. Our HMM is an analytically tractable approximation to the coalescent process with recombination, and in simulations we see no apparent bias in the HMM estimates. We apply the HMM to four autosomal contiguous human–chimp–gorilla–orangutan alignments comprising a total of 1.9 million base pairs. We find a very recent speciation time of human–chimp (4.1 ± 0.4 million years), and fairly large ancestral effective population sizes (65,000 ± 30,000 for the human–chimp ancestor and 45,000 ± 10,000 for the human–chimp–gorilla ancestor). Furthermore, around 50% of the human genome coalesces with chimpanzee after speciation with gorilla. We also consider 250,000 base pairs of X-chromosome alignments and find an effective population size much smaller than 75% of the autosomal effective population sizes. Finally, we find that the rate of transitions between different genealogies correlates well with the region-wide present-day human recombination rate, but does not correlate with the fine-scale recombination rates and recombination hot spots, suggesting that the latter are evolutionarily transient.  相似文献   
7.
Journal of Comparative Physiology B - All vertebrates possess baroreceptors monitoring arterial blood pressure and eliciting reflexive changes in vascular resistance and heart rate in response to...  相似文献   
8.
The nucleotide composition of the genome is a balance between the origin and fixation rates of different mutations. For example, it is well-known that transitions occur more frequently than transversions, particularly at CpG sites. Differences in fixation rates of mutation types are less explored. Specifically, recombination-associated GC-biased gene conversion (gBGC) may differentially impact GC-changing mutations, due to differences in their genomic distributions and efficiency of mismatch repair mechanisms. Given that recombination evolves rapidly across species, we explore gBGC of different mutation types across human populations and great ape species. We report a stronger correlation between segregating GC frequency and recombination for transitions than for transversions. Notably, CpG transitions are most strongly affected by gBGC in humans and chimpanzees. We show that the overall strength of gBGC is generally correlated with effective population sizes in humans, with some notable exceptions, such as a stronger effect of gBGC on non-CpG transitions in populations of European descent. Furthermore, species of the Gorilla and Pongo genus have a greatly reduced gBGC effect on CpG sites. We also study the dependence of gBGC dynamics on flanking nucleotides and show that some mutation types evolve in opposition to the gBGC expectation, likely due to the hypermutability of specific nucleotide contexts. Our results highlight the importance of different gBGC dynamics experienced by GC-changing mutations and their impact on nucleotide composition evolution.  相似文献   
9.
The analysis of complex cellular proteomes by means of two-dimensional gel electrophoresis (2-DE) is significantly limited by the power of resolution of this technique. Although subcellular fractionation can be a fundamental first step to increase resolution, it frequently leads to preparations contaminated with other cellular structures. Here, we chose mitochondria of Saccharomyces cerevisiae to demonstrate that an integrated zone-electrophoretic purification step (ZE), with a free-flow electrophoresis device (FFE), can assist in overcoming this problem, while significantly improving their degree of purity. Whereas mitochondrial preparations isolated by means of differential centrifugation include a considerable degree of non-mitochondrial proteins (16%), this contamination could be effectually removed by the inclusion of a ZE-FFE purification step (2%). This higher degree of purity led to the identification of many more proteins from ZE-FFE purified mitochondrial protein extracts (n = 129), compared to mitochondrial protein extracts isolated by differential centrifugation (n = 80). Moreover, a marked decrease of degraded proteins was found in the ZE-FFE purified mitochondrial protein extracts. It is noteworthy that even at a low 2-DE resolution level, a four-fold higher number (17 versus 4) of presumably low abundance proteins could be identified in the ZE-FFE purified mitochondrial protein extracts. Therefore these results represent a feasible approach for an in-depth proteome analysis of mitochondria and possibly other organelles.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号