全文获取类型
收费全文 | 2017篇 |
免费 | 83篇 |
专业分类
2100篇 |
出版年
2024年 | 7篇 |
2023年 | 21篇 |
2022年 | 34篇 |
2021年 | 62篇 |
2020年 | 25篇 |
2019年 | 62篇 |
2018年 | 50篇 |
2017年 | 55篇 |
2016年 | 54篇 |
2015年 | 100篇 |
2014年 | 94篇 |
2013年 | 137篇 |
2012年 | 157篇 |
2011年 | 157篇 |
2010年 | 86篇 |
2009年 | 89篇 |
2008年 | 114篇 |
2007年 | 130篇 |
2006年 | 107篇 |
2005年 | 97篇 |
2004年 | 88篇 |
2003年 | 99篇 |
2002年 | 91篇 |
2001年 | 23篇 |
2000年 | 19篇 |
1999年 | 12篇 |
1998年 | 23篇 |
1997年 | 10篇 |
1996年 | 8篇 |
1995年 | 7篇 |
1994年 | 5篇 |
1992年 | 6篇 |
1990年 | 5篇 |
1989年 | 6篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1981年 | 2篇 |
1980年 | 4篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1975年 | 4篇 |
1974年 | 2篇 |
1973年 | 7篇 |
1972年 | 4篇 |
1971年 | 3篇 |
1970年 | 4篇 |
1969年 | 3篇 |
1968年 | 2篇 |
1967年 | 2篇 |
排序方式: 共有2100条查询结果,搜索用时 15 毫秒
1.
Vadim V. Annenkov Tatjana N. Basharina Elena N. Danilovtseva Mikhail A. Grachev 《Protoplasma》2013,250(5):1147-1155
We studied the growth of the araphid pennate diatom Synedra acus subsp. radians (Kützing) Skabichevskii using a fluorescent dye N 1,N 3-dimethyl-N 1-(7-nitro-2,1,3-benzoxadiazol-4-yl)propane-1,3-diamine (NBD-N2), which stains growing siliceous frustules but does not stain other subcellular organelles. We used a clonal culture of S. acus that was synchronized by silicon starvation. Epifluorescence microscopy was performed in two different ways with cells stained by the addition of silicic acid and the dye. Individual cells immobilized on glass were observed during the first 15–20 min following the replenishment of silicic acid after silicon starvation. Alternatively, we examined cells of a batch culture at time intervals during 36 h after the replenishment of silicic acid using fluorescence and confocal microscopy. The addition of silicic acid and NBD-N2 resulted in the rapid (1–2 min) formation of several dozen green fluorescent submicrometer particles (GFSPs) in the cytoplasm, which was accompanied by the accumulation of fluorescent silica inside silica deposition vesicles (SDVs) along their full length. In 5–15 min, GFSPs disappeared from the cytoplasm. Mature siliceous valves were formed within the SDVs during the subsequent 14–16 h. In the next 8–10 h, GFSPs appeared again in the cytoplasm of daughter cells. The data obtained confirm observations about the two-stage mechanism of silicon assimilation, which includes rapid silicon uptake (surge uptake) followed by slow silica deposition. It is likely that the observed GFSPs are silicon transport vesicles, which were first proposed by Schmid and Schulz in (Protoplasma 100:267–288, 1979). 相似文献
2.
Anastasiia Moraleva Charalambos Magoulas Mikhail Polzikov Sabine Hacot Hichem C. Mertani Jean-Jacques Diaz 《Cell cycle (Georgetown, Tex.)》2017,16(20):1979-1991
The nucleolar proteins which link cell proliferation to ribosome biogenesis are regarded to be potentially oncogenic. Here, in order to examine the involvement of an evolutionary conserved nucleolar protein SURF6/Rrp14 in proliferation and ribosome biogenesis in mammalian cells, we established stably transfected mouse NIH/3T3 fibroblasts capable of conditional overexpression of the protein. Cell proliferation was monitored in real-time, and various cell cycle parameters were quantified based on flow cytometry, Br-dU-labeling and conventional microscopy data. We show that overexpression of SURF6 accelerates cell proliferation and promotes transition through all cell cycle phases. The most prominent SURF6 pro-proliferative effects include a significant reduction of the population doubling time, from 19.8 ± 0.7 to 16.2 ± 0.5 hours (t-test, p < 0.001), and of the length of cell division cycle, from 17.6 ± 0.6 to 14.0 ± 0.4 hours (t-test, p < 0.001). The later was due to the shortening of all cell cycle phases but the length of G1 period was reduced most, from 5.7 ± 0.4 to 3.8 ± 0.3 hours, or by ~30%, (t-test, p < 0.05). By Northern blots and qRT-PCR, we further showed that the acceleration of cell proliferation was concomitant with an accumulation of rRNA species along both ribosomal subunit maturation pathways. It is evident, therefore, that like the yeast homologue Rrp14, mammalian SURF6 is involved in various steps of rRNA processing during ribosome biogenesis. We concluded that SURF6 is a novel positive regulator of proliferation and G1/S transition in mammals, implicating that SURF6 is a potential oncogenic protein, which can be further studied as a putative target in anti-cancer therapy. 相似文献
3.
Michal T. Boniecki Seung Bae Rho Mikhail Tukalo Jennifer L. Hsu Eliana P. Romero Susan A. Martinis 《The Journal of biological chemistry》2009,284(39):26243-26250
Leucyl-tRNA synthetase (LeuRS) is an essential RNA splicing factor for yeast mitochondrial introns. Intracellular experiments have suggested that it works in collaboration with a maturase that is encoded within the bI4 intron. RNA deletion mutants of the large bI4 intron were constructed to identify a competently folded intron for biochemical analysis. The minimized bI4 intron was active in RNA splicing and contrasts with previous proposals that the canonical core of the bI4 intron is deficient for catalysis. The activity of the minimized bI4 intron was enhanced in vitro by the presence of the bI4 maturase or LeuRS.Although the aminoacyl-tRNA synthetases (aaRSs)6 are best known for their role in protein synthesis, many have functionally expanded and are essential to a wide range of other cellular activities that are unrelated to tRNA aminoacylation (1). The class I aaRSs, leucyl- (LeuRS or NAM2) and tyrosyl-tRNA synthetase (TyrRS or CYT-18) are required for RNA splicing of cognate group I introns in the mitochondria of certain lower eukaryotes (2). In yeast, processing of two related group I introns called bI4 and aI4α (Fig. 1) from the cob and cox1α genes, respectively, require yeast mitochondrial LeuRS (3, 4). Likewise, expression of Neurospora crassa mitochondrial genes, such as those for the large ribosomal RNA, is dependent on TyrRS for excising group I introns (5).Open in a separate windowFIGURE 1.Predicted secondary structures of the bI4 and aI4α group I introns. The secondary structure of the canonical core was based on previous predictions (19). Solid bold lines indicate linear connectivities of the nucleic acid strand with arrowheads oriented in the 5′ to 3′ direction. The dashed lines represent putative tertiary interactions. Dotted lines with numbers identify insertions where secondary structures were ambiguous. Arrows in the P1 and P9 domain show splice sites, whereas boxed nucleotides are paired regions.LeuRS facilitates RNA splicing in concert with a bI4 maturase that is encoded within the bI4 intron. Genetic investigations showed that an inactivated bI4 maturase resulting in deficient splicing activity of the bI4 and aI4α group I introns can be rescued by a suppressor mutation of LeuRS to restore mitochondrial respiration (4, 6). In addition, the splicing defect can be compensated by a mutant aI4α DNA endonuclease that is closely related to the bI4 maturase (7, 8).Previously, we used intracellular three-hybrid assays to demonstrate that LeuRS and bI4 maturase can independently bind to the bI4 intron and stimulate RNA splicing activity in the non-physiological yeast nucleus compartment (9). RNA-dependent two-hybrid assays also supported that the bI4 intron could simultaneously bind both the bI4 maturase and LeuRS. In this case, the RNA was co-expressed with LeuRS and bI4 maturase that was fused to either LexA or B42 to generate a two-hybrid response. This suggested that the bI4 intron was bridging these two protein splicing factors. In either the RNA-dependent two-hybrid or three-hybrid assays, bI4 intron splicing occurred only in the presence of LeuRS or bI4 maturase or both.We hypothesized that the bI4 maturase and LeuRS bind to distinct sites of the bI4 intron to form a ternary complex and promote efficient splicing activity. However, the functional basis of the collaboration between these two splicing cofactors or how either of them promotes RNA splicing remains unclear.We sought to characterize the respective splicing roles of the bI4 maturase and LeuRS via biochemical investigations. Previous attempts to develop an in vitro splicing assay for the bI4 intron or its closely related aI4α intron have failed (10, 11). It was hypothesized that the long length of the bI4 intron (∼1600 nucleotides) and its highly A:U-rich content (∼80%) hindered RNA folding in vitro as well as stabilization of its competent structure.Efforts to produce an active form of the bI4 intron have relied on building chimeric group I introns by interchanging RNA domains with the more stable Tetrahymena thermophila group I intron (11). Based on these results, it was proposed that the catalytic core of the bI4 group I intron was inherently defective (11). In this case, the group I intron would be expected to be completely dependent on its protein splicing factors similar to the bI3 intron that relies on the bI3 maturase and Mrs1 for activity (12). Thus, it was hypothesized that the bI4 maturase and/or LeuRS splicing factors aided the bI4 group I intron by targeting its core region to compensate for these deficiencies.We focused our efforts on re-designing the bI4 intron to develop a minimized molecule that might be competent for splicing. Because both the bI4 and aI4α group I introns rely on the bI4 maturase and LeuRS for their splicing activity, we compared their secondary structures to identify and eliminate peripheral regions outside of their catalytic cores. A small active derivative of the bI4 intron, comprised of just 380 nucleotides primarily from the canonical core, was generated. Thus, we show that, in and of itself, the canonical core of this group I intron is competent for splicing. Both the bI4 maturase and LeuRS enhance the splicing activity of the minimized bI4 intron. However, it is possible that protein-dependent splicing of the bI4 intron represents an intermediate evolutionary step in which the RNA activity is becoming increasingly dependent on its protein splicing factors. 相似文献
4.
5.
Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity. 相似文献
6.
Ovanesov MV Krasotkina JV Ul'yanova LI Abushinova KV Plyushch OP Domogatskii SP Vorob'ev AI Ataullakhanov FI 《Biochimica et biophysica acta》2002,1572(1):45-57
To gain greater insight into the nature of the bleeding tendency in hemophilia, we compared the spatial dynamics of clotting in platelet-free plasma from healthy donors and from patients with severe hemophilia A or B (factor VIII:C or IX:C<1%). Clotting was initiated via the intrinsic or extrinsic pathway in a thin layer of nonstirred plasma by bringing it in contact with the glass or fibroblast monolayer surface. The results suggest that clot growth is a process consisting of two distinct phases, initiation and elongation. The clotting events on the activator surface and the preceding period free of visible signs of clotting are the initiation phase. In experiments with and without stirring alike, this phase is prolonged in hemophilic plasma activated by the intrinsic, but not the extrinsic pathway. Strikingly, both hemophilia A and B are associated with a significant deterioration in the elongation phase (clot thickening), irrespective of the activation pathway. The rate of clot growth in hemophilic plasma is significantly lower than normal and declines quickly. The resulting clots are thin, which may account for the bleeding disorder. 相似文献
7.
The energetics of transmembrane (TM) helix dimerization in membranes and the thermodynamic principles behind receptor tyrosine kinase (RTK) TM domain interactions during signal transduction can be studied using Förster resonance energy transfer (FRET). For instance, FRET studies have yielded the stabilities of wild-type fibroblast growth factor receptor 3 (FGFR3) TM domains and two FGFR3 pathogenic mutants, Ala391Glu and Gly380Arg, in the native bilayer environment. To further our understanding of the molecular mechanisms of deregulated FGFR3 signaling underlying different pathologies, we determined the effect of the Gly382Asp FGFR3 mutation, identified in a multiple myeloma cell line, on the energetics of FGFR3 TM domain dimerization. We measured dimerization energetics using a novel FRET acquisition and processing method, termed “emission-excitation FRET (EmEx-FRET),” which improves the precision of thermodynamic measurements of TM helix association. The EmEx-FRET method, verified here by analyzing previously published data for wild-type FGFR3 TM domain, should have broad utility in studies of protein interactions, particularly in cases when the concentrations of fluorophore-tagged molecules cannot be controlled. 相似文献
8.
9.
Mikhail Soloviev 《Journal of nanobiotechnology》2007,5(1):11-3
In the recent years the nanobiotechnology field and the Journal of Nanobiotechnology readership have witnessed an increase
in interest towards the nanoparticles and their biological effects and applications. These include bottom-up and molecular
self-assembly, biological effects of naked nanoparticles and nano-safety, drug encapsulation and nanotherapeutics, and novel
nanoparticles for use in microscopy, imaging and diagnostics. This review highlights recent Journal of Nanobiotechnology publications
in some of these areas . 相似文献
10.
Bioremediation of oil polluted aquatic systems and soils with novel preparation `Rhoder' 总被引:4,自引:0,他引:4
This paper summarises the experience accumulated duringthe field application of biopreparation `Rhoder' (solely or in a combinationwith preliminary mechanical collection of free oil) for remediation of oil polluted aquatic systems and soils in the Moscow region and Western Siberia during 1994–1999.It was demonstrated that `Rhoder' had a very high efficiency (>99%) for bioremediation of the open aquatic surfaces (100 m2 bay of the River Chernaya, two 5,000 m2 lakes in Vyngayakha) at initial level of oil pollution of 0.4–19.1 g/l. During remediation of the wetland (2,000 m2) in Urai (initial level of oil pollution of 10.5 g/l), a preliminary mechanical collection of oil was applied (75% removal) followed by a triple treatment with `Rhoder'. It resulted in an overall treatment efficiency of 94%. Relatively inferior results of bioremediation of the 10,000 m2 wetland in Vyngayakha (65% removal) and the 1,000 m2 marshy peat soil in Nizhnevartovsk (19% removal) can be attributed to the very high initial level of oil pollution (24.3 g/l and >750 g/g dry matter, respectively) aggravated by the fact that it was impossible to apply a preliminary mechanical collection of oil on these sites. A possible strategy for remediation of such heavily polluted sitesis discussed. 相似文献