首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
  1975年   1篇
  1969年   1篇
排序方式: 共有18条查询结果,搜索用时 554 毫秒
1.
In determining the role of Chk in T cell signaling, we have focused on its protein-protein interactions. We detected a tyrosine phosphoprotein that coimmunoprecipitated with Chk from pervanadate stimulated human blastic T cells. Subsequent Western blot analysis identified this tyrosine phosphoprotein as paxillin. Paxillin, a cytoskeletal protein involved in focal adhesions, was first identified as a v-Src substrate in transformed fibroblasts. Interestingly, Chk specifically bound tyrosine phosphorylated paxillin. Consistent with our in vivo data, Chk and paxillin were observed to localize in similar cellular regions prior to and following stimulation. Using GST fusion proteins, we determined that the Chk SH2 domain, not the SH3 domain, bound tyrosine phosphorylated paxillin. Specifically, paxillin bound to the FLVRES motif of the Chk SH2 domain. Using Far Western analysis, we revealed that the Chk SH2 domain directly associates with tyrosine phosphorylated paxillin. Finally, p52(Chk) expression in Csk-deficient mouse embryo fibroblasts decreased total phosphotyrosine levels of paxillin, implying a physiological role for Chk. These studies provide important insight into the role of Chk in tyrosine mediated signaling, as well as T cell physiology.  相似文献   
2.
Defects in pharyngeal mechanical and neuromuscular control are required for the development of obstructive sleep apnea. Obesity and age are known sleep apnea risk factors, leading us to hypothesize that specific defects in upper airway neuromechanical control are associated with weight and age in a mouse model. In anesthetized, spontaneously breathing young and old wild-type C57BL/6J mice, genioglossus electromyographic activity (EMG(GG)) was monitored and upper airway pressure-flow dynamics were characterized during ramp decreases in nasal pressure (Pn, cmH?O). Specific body weights were targeted by controlling caloric intake. The passive critical pressure (Pcrit) was derived from pressure-flow relationships during expiration. The Pn threshold at which inspiratory flow limitation (IFL) developed and tonic and phasic EMG(GG) activity during IFL were quantified to assess the phasic modulation of pharyngeal patency. The passive Pcrit increased progressively with increasing body weight and increased more in the old than young mice. Tonic EMG(GG) decreased and phasic EMG(GG) increased significantly with obesity. During ramp decreases in Pn, IFL developed at a higher (less negative) Pn threshold in the obese than lean mice, although the frequency of IFL decreased with age and weight. The findings suggest that weight imposes mechanical loads on the upper airway that are greater in the old than young mice. The susceptibility to upper airway obstruction increases with age and weight as tonic neuromuscular activity falls. IFL can elicit phasic responses in normal mice that mitigate or eliminate the obstruction altogether.  相似文献   
3.
Vicia faba seeds (cv. Giza 1) were planted in the Inshas gamma radiation field where they were chronically irradiated during the whole life of the plant. The percentage of the induced abnormal P.M.Cs, as well as the frequency of abnormal P.M.Cs in the different meiotic stages were proportional with the given doses. The main types of chromosome aberrations were anaphase and telophase bridges, fragmentation and lagging chromosomes. The nearest plants to the source showed an inhibition of shoot growth, flower and seed sterility and irregular branching. At the dosage levels used irradiation had no effect on pollen fertility. Seeds of the 1st filial generation were used for both mitotic and meiotic studies. The percentage of the mitotic abnormalities was proportional with the doses. The most dominant type of anomaly was the presence of micronuclei in the different stages of mitosis and in the resting cells. Irradiation affected also other types of anomaliese.g. lagging chromosomes, fragments, bridges...etc. Meiosis, and pollen fertility (2nd generation) were normal.  相似文献   
4.
A 30-residue antimicrobial peptide Ar-AMP was isolated from the seeds of amaranth Amaranthus retroflexus L. essentially by a single step procedure using reversed-phase HPLC, and its in vitro biological activities were studied. The complete amino acid sequence of Ar-AMP was determined by Edman degradation in combination with mass spectrometric methods. In addition, the cDNA encoding Ar-AMP was obtained and sequenced. The cDNA encodes a precursor protein consisting of the N-terminal putative signal sequence of 25 amino acids, a mature peptide of 30 amino acids and a 34-residue long C-terminal region cleaved during post-translational processing. According to sequence similarity the Ar-AMP belongs to the hevein-like family of antimicrobial peptides with six cysteine residues. In spite of the fact that seeds were collected in 1967 and lost their germination capacity, Ar-AMP retained its biological activities. It effectively inhibited the growth of different fungi tested: Fusarium culmorium (Smith) Sacc., Helminthosporium sativum Pammel., King et Bakke, Alternaria consortiale Fr., and Botrytis cinerea Pers., caused morphological changes in Rhizoctonia solani Kühn at micromolar concentrations and protected barley seedlings from H. sativum infection.  相似文献   
5.
2D ion‐intercalated metal oxides are emerging promising new electrodes for supercapacitors because of their unique layered structure as well as distinctive electronic properties. To facilitate their application, fundamental study of the charge storage mechanism is required. Herein, it is demonstrated that the application of in situ Raman spectroscopy and electrochemical quartz crystal microbalance with dissipation monitoring (EQCM‐D), provides a sufficient basis to elucidate the charge storage mechanism in a typical 2D cation‐intercalated manganese oxide (Na0.55Mn2O4·1.5H2O, abbreviated as NMO) in neutral and alkaline aqueous electrolytes. The results reveal that in neutral Na2SO4 electrolytes, NMO mainly displays a surface‐controlled pseudocapacitive behavior in the low potential region (0–0.8 V), but when the potential is higher than 0.8 V, an intercalation pseudocapacitive behavior becomes dominant. By contrast, NMO shows a battery‐like behavior associated with OH? ions in alkaline NaOH electrolyte. This study verifies that the charge storage mechanism of NMO strongly depends on the type of electrolyte, and even in the same electrolyte, different charging behaviors are revealed in different potential ranges which should be carefully taken into account when optimizing the use of the electrode materials in practical energy‐storage devices.  相似文献   
6.
Obesity is associated with alterations in upper airway collapsibility during sleep. Obese, leptin-deficient mice demonstrate blunted ventilatory control, leading us to hypothesize that (1) obesity and leptin deficiency would predispose to worsening neuromechanical upper airway function and that (2) leptin replacement would acutely reverse neuromuscular defects in the absence of weight loss. In age-matched, anesthetized, spontaneously breathing C57BL/6J (BL6) and ob(-)/ob(-) mice, we characterized upper airway pressure-flow dynamics during ramp decreases in nasal pressure (P(N)) to determine the passive expiratory critical pressure (P(CRIT)) and active responses to reductions in P(N), including the percentage of ramps showing inspiratory flow limitation (IFL; frequency), the P(N) threshold at which IFL developed, maximum inspiratory airflow (Vi(max)), and genioglossus electromyographic (EMG(GG)) activity. Elevations in body weight were associated with progressive elevations in P(CRIT) (0.1 ± 0.02 cmH(2)O/g), independent of mouse strain. P(CRIT) was also elevated in ob(-)/ob(-) compared with BL6 mice (1.6 ± 0.1 cmH(2)O), independent of weight. Both obesity and leptin deficiency were associated with significantly higher IFL frequency and P(N) threshold and lower VI(max). Very obese ob(-)/ob(-) mice treated with leptin compared with nontreated mice showed a decrease in IFL frequency (from 63.5 ± 2.9 to 30.0 ± 8.6%) and P(N) threshold (from -0.8 ± 1.1 to -5.6 ± 0.8 cmH(2)O) and increase in VI(max) (from 354.1 ± 25.3 to 659.0 ± 71.8 μl/s). Nevertheless, passive P(CRIT) in leptin-treated mice did not differ significantly from that seen in nontreated ob(-)/ob(-) mice. The findings suggest that weight and leptin deficiency produced defects in upper airway neuromechanical control and that leptin reversed defects in active neuromuscular responses acutely without reducing mechanical loads.  相似文献   
7.
Reliably producing functional in vitro organ models, such as organ-on-chip systems, has the potential to considerably advance biology research, drug development time, and resource efficiency. However, despite the ongoing major progress in the field, three-dimensional bone tissue models remain elusive. In this review, we specifically investigate the control of perfusion flow effects as the missing link between isolated culture systems and scientifically exploitable bone models and propose a roadmap toward this goal.  相似文献   
8.
Catalytic mechanisms of carboxypeptidase A (CPA) are well known for their diversity and the relative inaccessibility for a decisive comprehension. Recent encouraging attempts through modern computational techniques promoted new challenges for the complementary experimental endeavors. In this work, we have applied the stopped-flow technique and the method of reaction progress curve fitting to extract kinetic parameters for the CPA-catalyzed hydrolyses of smaller (typical) peptide and ester substrates, known for their strong activating/inhibiting impact, thus to which the traditional method of "initial rates" is not applicable. Our approach that innately implies the overall constancy of the affecter (substrate plus "active" product) concentration, made it possible to rigorously determine the physically meaningful "effective" values for the catalytic and Michaelis constants under diverse experimental conditions including variable temperature and urea or trimethylamine N-oxide concentrations. Analysis of the obtained results allowed for: (i) the further substantiation of diverse mechanistic patterns for archetypal specific peptide and ester substrates, (ii) testing and disclosure of intrinsic links between the stabilizing/destabilizing and activating/inhibiting effects for the important model enzyme, CPA, and (iii) tentative explanation of a distinct activating/inhibiting impact of these substrates through the strong specific interaction of their benzyl (Bz) moiety with the substrate binding S(3) subsite of CPA. We have demonstrated that stabilization of CPA either through the interaction with an extra Bz moiety (belonging to another substrate or to the product) leads to the increase of its catalytic power with respect to the specific peptide substrate and to its decrease with respect to the counterpart ester substrate. We conjecture that the catalytic mechanisms operating in these two cases include: (a) the "promoted water" mechanism for the peptide substrate that, seemingly, provides the almost "perfect induced fit" (low-barrier conformational adaptation), and (b) presumably, the "anhydride intermediate" mechanism for the ester substrate that, anyway, requires substantial conformational rearrangement (in fact, "partial or local unfolding") of the protein environment in the course of the rate-determining step.  相似文献   
9.
Controlling stimulus access to sensory organs allows animals to optimize sensory reception and prevent damage. The vomeronasal organ (VNO) detects pheromones and other semiochemicals to regulate innate social and sexual behaviors. This semiochemical detection generally requires the VNO to draw in chemical fluids, such as bodily secretions, which are complex in composition and can be contaminated. Little is known about whether and how chemical constituents are monitored to regulate the fluid access to the VNO. Using transgenic mice and immunolabeling, we found that solitary chemosensory cells (SCCs) reside densely at the entrance duct of the VNO. In this region, most of the intraepithelial trigeminal fibers innervate the SCCs, indicating that SCCs relay sensory information onto the trigeminal fibers. These SCCs express transient receptor potential channel M5 (TRPM5) and the phospholipase C (PLC) β2 signaling pathway. Additionally, the SCCs express choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) for synthesizing and packaging acetylcholine, a potential transmitter. In intracellular Ca2+ imaging, the SCCs responded to various chemical stimuli including high concentrations of odorants and bitter compounds. The responses were suppressed significantly by a PLC inhibitor, suggesting involvement of the PLC pathway. Further, we developed a quantitative dye assay to show that the amount of stimulus fluid that entered the VNOs of behaving mice is inversely correlated to the concentration of odorous and bitter substances in the fluid. Genetic knockout and pharmacological inhibition of TRPM5 resulted in larger amounts of bitter compounds entering the VNOs. Our data uncovered that chemoreception of fluid constituents regulates chemical access to the VNO and plays an important role in limiting the access of non-specific irritating and harmful substances. Our results also provide new insight into the emerging role of SCCs in chemoreception and regulation of physiological actions.  相似文献   
10.
Fast ion adsorption processes in supercapacitors enable quick storage/delivery of significant amounts of energy, while ion intercalation in battery materials leads to even larger amounts of energy stored, but at substantially lower rates due to diffusional limitations. Intercalation of ions into the recently discovered 2D Ti3C2Tx (MXene) occurs with a very high rate and leads to high capacitance, posing a paradox. Herein, by characterizing the mechanical deformations of MXene electrode materials at various states‐of‐charge with a variety of cations (Li, Na, K, Cs, Mg, Ca, Ba, and three tetra­alkylammonium cations) during cycling by electrochemical quartz‐crystal admittance (EQCA, quartz‐crystal microbalance with dissipation monitoring) combined with in situ electronic conductance and electrochemical impedance, light is shone on this paradox. Based on this work, it appears that the capacitive paradox stems from cationic insertion, accompanied by significant deformation of the MXene particles, that occurs so rapidly so as to resemble 2D ion adsorption at solid‐liquid interfaces. The latter is greatly facilitated by the presence of water molecules between the MXene sheets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号