首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   28篇
  2023年   1篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   7篇
  2018年   11篇
  2017年   10篇
  2016年   6篇
  2015年   11篇
  2014年   24篇
  2013年   18篇
  2012年   28篇
  2011年   33篇
  2010年   17篇
  2009年   17篇
  2008年   32篇
  2007年   29篇
  2006年   32篇
  2005年   44篇
  2004年   38篇
  2003年   26篇
  2002年   15篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1997年   3篇
  1996年   2篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1971年   1篇
排序方式: 共有475条查询结果,搜索用时 62 毫秒
1.
A Horita  M A Carino  J Zabawska  H Lai 《Peptides》1989,10(1):121-124
Microinjection of ibotenic acid into medial septum of rats decreased choline acetyltransferase (CAT) and high-affinity choline uptake (HACU) activities in hippocampus and retarded the learning of a spatial memory task in the radial-arm maze. Administration of MK-771, a stable TRH analog, to such animals restored HACU activity in hippocampus to normal levels. Daily treatment of rats with MK-771 prior to maze running also restored the animals' learning ability. MK-771 did not enhance hippocampal HACU activity or maze performance in sham-lesioned rats. These results suggest that MK-771 reversed the ibotenic acid-induced memory deficit by restoring septohippocampal cholinergic function. MK-771 and other TRH analogs may represent novel agents for improving memory deficits produced by cholinergic insufficiency in Alzheimer's disease.  相似文献   
2.
SKF 38393 (5 mg/kg), but not quinpirole, shortened the duration of loss of righting reflex produced in pentobarbital-narcotized rats. This effect was blocked by atropine (2 mg/kg), but not by atropine methylbromide, suggesting involvement of central cholinergic mechanisms. The analeptic effect was also blocked by SCH 23390 (0.2 mg/kg) or raclopride (2 mg/kg). SKF 38393 also increased sodium dependent high affinity choline uptake (HACU) in cortical and hippocampal synaptosomes that had been depressed by pentobarbital. SCH 23390 or raclopride prevented the SKF 38393 reversal of the depressed HACU, indicating that both D1 and D2 mechanisms were involved mediating the analeptic effect. These results provide neurochemical evidence that cortical and hippocampal D1-mediated cholinergic activation results in a behavioral arousal (analeptic) response. They also suggest that DA mechanisms may be involved in regulation of cortical and hippocampal cholinergic neurons.  相似文献   
3.
For three-dimensional understanding of the mechanisms that control potency and selectivity of the ligand binding at the atomic level, we have analysed opioid receptor-ligand interaction based on the receptor's 3D model. As a first step, we have constructed molecular models for the multiple opioid receptor subtypes using bacteriorhodopsin as a template. The S-activated dihydromorphine derivatives should serve as powerful tools in mapping the three-dimensional structure of the μ opioid receptor, including the nature of the agonist-mediated conformational change that permits G protein-coupling to ‘second messenger’ effector molecules, and in identifying specific ligand-binding contacts with the μ opioid receptor. The analyses of the interactions of some opioid ligands with the predicted ligand binding sites are consistent with the results of the affinity labeling experiments.  相似文献   
4.
S M Simasko  A Horita 《Life sciences》1982,30(21):1793-1799
The characteristics and distribution of putative thyrotropin releasing hormone (TRH) receptors were studied in rat central nervous system using the TRH analogue 3H-(3MeHis2)TRH as a radiolabeled ligand. The analogue had a dissociation constant of 2.3 +/- 0.2 nM and a receptor density of 34 +/- 2 fm/mg protein in whole brain, homogenates. An association rate constant ot 1.6 x 10(-3) min-1nM-1 and a biphasic dissociation with rate constants of 2.6 x 10(-3) min-1 and 1.3 x 10(-4) min-1 were observed. The brain was dissected into ten regions, and detectable levels of binding were found in all regions. The highest levels were found in amygdala/piriform cortex area and the septal region, and the lowest levels were found in the cerebellar and cerebral cortex. Competition curves showed the methylated analogue to have approximately 7-fold higher affinity for the receptor than TRH. The higher affinity, along with lower nonspecific binding, accounts for the much improved sensitivity of the binding assay of the methylated analogue (70-80% specific binding) as compared to 3H-TRH (15-20% specific binding) and enables one to work with much lower tissue amounts. Use of the tritiated analogue will greatly aid in further studies of TRH receptors.  相似文献   
5.
Kumrungsee  Thanutchaporn  Arima  Takeshi  Sato  Kanako  Komaru  Takumi  Sato  Mikako  Oishi  Yasuyuki  Egusa  Ai  Yanaka  Noriyuki 《Amino acids》2020,52(5):743-753
Amino Acids - Carnosine (β-alanyl-l-histidine) is an imidazole dipeptide present at high concentrations in skeletal muscles, where it plays a beneficial role. However, oral intake of carnosine...  相似文献   
6.
Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR. We first found that RRM1 was prone to aggregation and had three regions showing stable chemical shifts during misfolding. Moreover, mass spectrometric analysis of aggregated RRM1 revealed that one of the regions was located on protease-resistant β-strands containing two cysteines (Cys-173 and Cys-175), indicating that this region served as a core assembly interface in RRM1 aggregation. Although a fraction of RRM1 aggregates comprised disulfide-bonded oligomers, the substitution of cysteine(s) to serine(s) (C/S) resulted in unexpected acceleration of amyloid fibrils of RRM1 and disulfide-independent aggregate formation of full-length TDP-43. Notably, TDP-43 aggregates with RRM1-C/S required the C terminus, and replicated cytopathologies of ALS, including mislocalization, impaired RNA splicing, ubiquitination, phosphorylation, and motor neuron toxicity. Furthermore, RRM1-C/S accentuated inclusions of familial ALS-linked TDP-43 mutants in the C terminus. The relevance of RRM1-C/S-induced TDP-43 aggregates in ALS pathogenesis was verified by immunolabeling of inclusions of ALS patients and cultured cells overexpressing the RRM1-C/S TDP-43 with antibody targeting misfolding-relevant regions. Our results indicate that cysteines in RRM1 crucially govern the conformation of TDP-43, and aberrant self-assembly of RRM1 at amyloidogenic regions contributes to pathogenic conversion of TDP-43 in ALS.  相似文献   
7.
In order to produce insulin-secreting cells with a high value of glucose-stimulated insulin secretion (GSIS) from mouse embryonic stem cells, we have developed an optimized 5-stage protocol by referring to culture conditions so far reported elsewhere. This protocol is characterized by 4 points: (1) use of an activin-free medium in the first stage, (2) use of gelatin/fibronectin coated culture dishes in 1–4 stages throughout, (3) removal of undifferentiated cells by cell sorter at the end of 4th stage, and (4) sedimental culture in the 5th stage. GSIS value of the produced cells reached 2.4, that was at a higher rank of those so far reported. The produced cells were transplanted in diabetes model mice but no remedy effect was observed. Then transplantation was conducted in pre-diabetes model mice, in which GSIS was impaired without affecting insulin producing function. The transplantation of 5 × 106 cells resulted in a marked improvement of glucose tolerance within 20 days. This effect decreased but was still observed at 120 days post-transplantation. This demonstrates the feasibility of the novel optimized protocol.  相似文献   
8.
9.
The Rac-specific guanine nucleotide exchange factor (GEF) Asef is activated by binding to the tumor suppressor adenomatous polyposis coli mutant, which is found in sporadic and familial colorectal tumors. This activated Asef is involved in the migration of colorectal tumor cells. The GEFs for Rho family GTPases contain the Dbl homology (DH) domain and the pleckstrin homology (PH) domain. When Asef is in the resting state, the GEF activity of the DH-PH module is intramolecularly inhibited by an unidentified mechanism. Asef has a Src homology 3 (SH3) domain in addition to the DH-PH module. In the present study, the three-dimensional structure of Asef was solved in its autoinhibited state. The crystal structure revealed that the SH3 domain binds intramolecularly to the DH domain, thus blocking the Rac-binding site. Furthermore, the RT-loop and the C-terminal region of the SH3 domain interact with the DH domain in a manner completely different from those for the canonical binding to a polyproline-peptide motif. These results demonstrate that the blocking of the Rac-binding site by the SH3 domain is essential for Asef autoinhibition. This may be a common mechanism in other proteins that possess an SH3 domain adjacent to a DH-PH module.  相似文献   
10.
This protocol details a method for monitoring glucose uptake into single, living mammalian cells using a fluorescent D-glucose derivative, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG), as a tracer. The specifically designed chamber and superfusion system for evaluating 2-NBDG uptake into cells in real time can be combined with other fluorescent methods such as Ca2+ imaging and the subsequent immunofluorescent classification of cells exhibiting divergent 2-NBDG uptake. The whole protocol, including immunocytochemistry, can be completed within 2 d (except for cell culture). The procedure for 2-NBDG synthesis is also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号