首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1515篇
  免费   52篇
  1567篇
  2024年   4篇
  2023年   4篇
  2022年   11篇
  2021年   27篇
  2020年   13篇
  2019年   26篇
  2018年   37篇
  2017年   27篇
  2016年   32篇
  2015年   60篇
  2014年   81篇
  2013年   74篇
  2012年   122篇
  2011年   120篇
  2010年   59篇
  2009年   57篇
  2008年   129篇
  2007年   103篇
  2006年   97篇
  2005年   90篇
  2004年   81篇
  2003年   98篇
  2002年   81篇
  2001年   13篇
  2000年   19篇
  1999年   18篇
  1998年   11篇
  1997年   7篇
  1996年   8篇
  1995年   9篇
  1994年   8篇
  1993年   8篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1987年   4篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   3篇
  1969年   1篇
  1961年   1篇
  1960年   1篇
  1954年   1篇
排序方式: 共有1567条查询结果,搜索用时 0 毫秒
1.
2.
3.
A rat model for human minimal change nephropathy was obtained by the intravenous injection of adriamycin (ADR) at 5 mg/kg. By using an in vivo electron paramagnetic resonance (EPR) spectrometer operating at 700 MHz, the temporal changes in signal intensities of a nitroxide radical, 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), in the kidneys of rats with ADR nephropathy were investigated. The decay rate of the EPR signal intensity obtained in the kidney is indicative of the renal reducing ability. It was found that the reducing ability in the kidney declined on the 7th day after ADR administration and recovered after the 14th day. Impairment of the reducing ability occurred before the appearance of continuous urinary protein. The in vitro EPR study showed that this impairment of in vivo renal reducing ability is related to impairment of the reducing ability in the mitochondria.  相似文献   
4.
    
Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [3H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [3H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds.  相似文献   
5.
Crystallography driven optimisation of a lead derived from similarity searching of the GSK compound collection resulted in the discovery of quinoline-3-carboxamides as highly potent and selective inhibitors of phosphodiesterase 4B. This series has been optimized to GSK256066, a potent PDE4B inhibitor which also inhibits LPS induced production of TNF-α from isolated human peripheral blood mononuclear cells with a pIC50 of 11.1. GSK256066 also has a suitable profile for inhaled dosing.  相似文献   
6.
7.
    
Injury in adult tissue generally reactivates developmental programs to foster regeneration, but it is not known whether this paradigm applies to growing tissue. Here, by employing blisters, we show that epidermal wounds heal at the expense of skin development. The regenerated epidermis suppresses the expression of tissue morphogenesis genes accompanied by delayed hair follicle (HF) growth. Lineage tracing experiments, cell proliferation dynamics, and mathematical modeling reveal that the progeny of HF junctional zone stem cells, which undergo a morphological transformation, repair the blisters while not promoting HF development. In contrast, the contribution of interfollicular stem cell progeny to blister healing is small. These findings demonstrate that HF development can be sacrificed for the sake of epidermal wound regeneration. Our study elucidates the key cellular mechanism of wound healing in skin blistering diseases.  相似文献   
8.
    

Post-traumatic osteoarthritis (PTOA) is a common disease, where the mechanical integrity of articular cartilage is compromised. PTOA can be a result of chondral defects formed due to injurious loading. One of the first changes around defects is proteoglycan depletion. Since there are no methods to restore injured cartilage fully back to its healthy state, preventing the onset and progression of the disease is advisable. However, this is problematic if the disease progression cannot be predicted. Thus, we developed an algorithm to predict proteoglycan loss of injured cartilage by decreasing the fixed charge density (FCD) concentration. We tested several mechanisms based on the local strains or stresses in the tissue for the FCD loss. By choosing the degeneration threshold suggested for inducing chondrocyte apoptosis and cartilage matrix damage, the algorithm driven by the maximum shear strain showed the most substantial FCD losses around the lesion. This is consistent with experimental findings in the literature. We also observed that by using coordinate system-independent strain measures and selecting the degeneration threshold in an ad hoc manner, all the resulting FCD distributions would appear qualitatively similar, i.e., the greatest FCD losses are found at the tissue adjacent to the lesion. The proposed strain-based FCD degeneration algorithm shows a great potential for predicting the progression of PTOA via biomechanical stimuli. This could allow identification of high-risk defects with an increased risk of PTOA progression.

  相似文献   
9.
The JAK/STAT pathway is essential for organogenesis, innate immunity, and stress responses in Drosophila melanogaster. The JAK/STAT pathway and its associated regulators have been highly conserved in evolution from flies to humans. We have used a genome-wide RNAi screen in Drosophila S2 cells to identify regulators of the JAK/STAT pathway, and here we report the characterization of Not4 as a positive regulator of the JAK/STAT pathway. Overexpression of Not4 enhanced Stat92E-mediated gene responses in vitro and in vivo in Drosophila. Specifically, Not4 increased Stat92E-mediated reporter gene activation in S2 cells; and in flies, Not4 overexpression resulted in an 8-fold increase in Turandot M (TotM) and in a 4-fold increase in Turandot A (TotA) stress gene activation when compared to wild-type flies. Drosophila Not4 is structurally related to human CNOT4, which was found to regulate interferon-γ- and interleukin-4-induced STAT-mediated gene responses in human HeLa cells. Not4 was found to coimmunoprecipitate with Stat92E but not to affect tyrosine phosphorylation of Stat92E in Drosophila cells. However, Not4 is required for binding of Stat92E to its DNA recognition sequence in the TotM gene promoter. In summary, Not4/CNOT4 is a novel positive regulator of the JAK/STAT pathway in Drosophila and in humans.  相似文献   
10.
    
We have shown the functional expression by chondrocytes of serine racemase (SR) which is responsible for the synthesis of D-serine (Ser) from L-Ser in cartilage. In this study, we evaluated the possible functional expression of SR by bone-forming osteoblasts and bone-resorbing osteoclasts. Expression of SR mRNA was seen in osteoblasts localized at the cancellous bone surface in neonatal rat tibial sections and in cultured rat calvarial osteoblasts endowed to release D-Ser into extracellular medium, but not in cultured osteoclasts differentiated from murine bone marrow progenitor cells. Sustained exposure to D-Ser failed to significantly affect alkaline phosphatase activity and Ca(2+) accumulation in cultured osteoblasts, but significantly inhibited differentiation and maturation in a concentration-dependent manner at a concentration range of 0.1-1 mM without affecting cellular survival in cultured osteoclasts. By contrast, L-Ser promoted osteoclastic differentiation in a manner sensitive to the inhibition by D-Ser. Matured osteoclasts expressed mRNA for the amino acid transporter B(0,+) (ATB(0,+) ) and the system alanine, serine, and cysteine amino acid transporter-2 (ASCT2), which are individually capable of similarly incorporating extracellular L- and D-Ser. Knockdown of these transporters by siRNA prevented both the promotion by L-Ser and the inhibition by D-Ser of osteoclastic differentiation in pre-osteoclastic RAW264.7 cells. These results suggest that D-Ser may play a pivotal role in osteoclastogenesis through a mechanism related to the incorporation mediated by both ATB(0,+) and ASCT2 of serine enantiomers in osteoclasts after the synthesis and subsequent release from adjacent osteoblasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号