首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  2020年   1篇
  2016年   4篇
  2015年   3篇
  2014年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
Both traits and the plasticity of these traits are subject to evolutionary change and therefore affect the long‐term persistence of populations and their role in local communities. We subjected clones from 12 different populations of Alnus glutinosa, located along a latitudinal gradient, to two different temperature treatments, to disentangle the distribution of genetic variation in timing of bud burst and bud burst plasticity within and among genotypes, populations, and regions. We calculated heritability and evolvability estimates for bud burst and bud burst plasticity and assessed the influence of divergent selection relative to neutral drift. We observed higher levels of heritability and evolvability for bud burst than for its plasticity, whereas the total phenological heritability and evolvability (i.e. combining timing of bud burst and bud burst plasticity) suggest substantial evolutionary potential with respect to phenology. Earlier bud burst was observed for the low‐latitudinal populations than for the populations from higher latitudes, whereas the high‐latitudinal populations did not show the expected delayed bud burst. This countergradient variation can be due to evolution towards increased phenological plasticity at higher latitudes. However, because we found little evidence for adaptive differences in phenological plasticity across the latitudinal gradient, we suggest differential frost tolerance as the most likely explanation for the observed phenological patterns in A. glutinosa.  相似文献   
2.
Pinoresinol-lariciresinol and isoflavone reductase classes are phylogenetically related, as is a third, the so-called "isoflavone reductase homologs." This study establishes the first known catalytic function for the latter, as being able to engender the NADPH-dependent reduction of phenylcoumaran benzylic ethers. Accordingly, all three reductase classes are involved in the biosynthesis of important and related phenylpropanoid-derived plant defense compounds. In this investigation, the phenylcoumaran benzylic ether reductase from the gymnosperm, Pinus taeda, was cloned, with the recombinant protein heterologously expressed in Escherichia coli. The purified enzyme reduces the benzylic ether functionalities of both dehydrodiconiferyl alcohol and dihydrodehydrodiconiferyl alcohol, with a higher affinity for the former, as measured by apparent Km and Vmax values and observed kinetic 3H-isotope effects. It abstracts the 4R-hydride of the required NADPH cofactor in a manner analogous to that of the pinoresinol-lariciresinol reductases and isoflavone reductases. A similar catalytic function was observed for the corresponding recombinant reductase whose gene was cloned from the angiosperm, Populus trichocarpa. Interestingly, both pinoresinol-lariciresinol reductases and isoflavone reductases catalyze enantiospecific conversions, whereas the phenylcoumaran benzylic ether reductase only shows regiospecific discrimination. A possible evolutionary relationship among the three reductase classes is proposed, based on the supposition that phenylcoumaran benzylic ether reductases represent the progenitors of pinoresinol-lariciresinol and isoflavone reductases.  相似文献   
3.
4.
Multivariate analysis of both endocarp and leaf morphometrics is combined with cluster analysis and Bayesian inference of AFLP markers to assess the morphologic and genetic variation of five European members of Prunus section Prunus (P. cerasifera, P. domestica, P. insititia, P. spinosa, and P. × fruticans). Endocarp morphometrics separate most Prunus taxa studied, but overlap remains between P. domestica and P. cerasifera, and P. spinosa and P. × fruticans. Leaf morphometrics yield better separation of P. domestica and P. cerasifera, but do not allow distinction between P. spinosa and P. × fruticans. Both cluster analysis and PCoA of AFLP markers equally produce three distinct clusters. A first consists of all P. cerasifera samples and the sole P. cocomilia; a second cluster includes all individuals of P. domestica and P. insititia; and a third group comprises all P. spinosa and P. × fruticans samples.  相似文献   
5.
6.
  • Plants are known to respond to warming temperatures. Few studies, however, have included the temperature experienced by the parent plant in the experimental design, in spite of the importance of this factor for population dynamics.
  • We investigated the phenological and growth responses of seedlings of two key temperate tree species (Fagus sylvatica and Quercus robur) to spatiotemporal temperature variation during the reproductive period (parental generation) and experimental warming of the offspring. To this end, we sampled oak and beech seedlings of different ages (1–5 years) from isolated mother trees and planted the seedlings in a common garden.
  • Warming of the seedlings advanced bud burst in both species. In oak seedlings, higher temperatures experienced by mother trees during the reproductive period delayed bud burst in control conditions, but advanced bud burst in heated seedlings. In beech seedlings, bud burst timing advanced both with increasing temperatures during the reproductive period of the parents and with experimental warming of the seedlings. Relative diameter growth was enhanced in control oak seedlings but decreased with warming when the mother plant experienced higher temperatures during the reproductive period.
  • Overall, oak displayed more plastic responses to temperatures than beech. Our results emphasise that temperature during the reproductive period can be a potential determinant of tree responses to climate change.
  相似文献   
7.
Despite their genetic homogeneity, many taxonomic species are described as European dogroses (Rosa L. section Caninae (DC.) Ser.) with consistent morphological variability. Here we report a morphometric study of 27 hip and leaf characters of proximate dogrose populations that include Rosa agrestis, a member of the subsection Rubigineae, in Flanders. In principal components analysis one R. agrestis population in Kanne had intermediate morphology between R. canina and R. corymbifera, on the one hand, and three other R. agrestis populations, on the other, suggesting hybridogenic origin. Half-sib R. agrestis seedlings were grown under controlled conditions and their leaf characters were studied. A tendency toward deviating morphology in seedlings from the Kanne population, analogous to the mother plants in the field, and a correlation for specific leaf characters between mother plants and their corresponding seedlings reinforce a genetic basis for the observed divergence in the Kanne population. The assumed hybridogenic mother plants did not produce fewer seeds per hip than the others of the pure populations. In addition, for all sampled dogroses, which included six species, the diameter of the discus was correlated with the number of seeds per hip, whereas the diameter of the orifice was not correlated with this character. This implies that only the diameter of the orifice and not the diameter of the discus might be decisive for species identification among European dogroses.  相似文献   
8.
Proteins that are preferentially produced in developing xylem may play a substantial role in xylogenesis. To reveal the identity of these proteins, comparative two-dimensional polyacrylamide gel electrophoresis was performed on young differentiating xylem, mature xylem, and bark of poplar (Populus trichocarpa Hook. cv. `Trichobel') harvested at different times of the year. The most-abundant xylem proteins were identified by microsequence analysis. For 17 of these proteins a putative function could be assigned based on similarity with previously characterized proteins, and for 15 out of these corresponding expressed sequence tags (ESTs) were found in the poplar EST database. The identified xylem–preferential proteins, defined by comparing the protein patterns from xylem and bark, were all involved in the phenylpropanoid pathway: two caffeoyl-coenzyme A O-methyltransferases (CCoAOMT), one phenylcoumaran benzylic ether reductase (PCBER), one bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT), five S-adenosyl-L-methionine synthetases, and one homologue of glycine hydroxymethyltransferase (GHMT). Remarkably, the biological function of the two most-abundant xylem-preferential proteins (PCBER and a GHMT homologue) remains unclear. In addition, several housekeeping enzymes were identified: two enolases, two glutamine synthetases, one 70-kDa heat-shock cognate, one calreticulin, and one α-tubulin. In comparison to the xylem-preferential proteins, the housekeeping proteins were expressed at significant levels in the bark as well. Also, several additional protein spots were detected for CCoAOMT, PCBER, and COMT by immunoblot. Our data show that for the study of xylogenesis, two-dimensional protein gel comparisons combined with systematic protein sequencing may yield information complementary to that from EST sequencing strategies. Received: 28 June 1999 / Accepted: 3 September 1999  相似文献   
9.
BACKGROUND AND AIMS: Identification of Prunus groups at subspecies or variety level is complicated by the wide range of variation and morphological transitional states. Knowledge of the degree of variability within and between species is a sine qua non for taxonomists. Here, a detailed study of endocarp dimension and shape variation for taxa of Prunus section Prunus is presented. METHODS: The sample size necessary to obtain an estimation of the population mean with a precision of 5 % was determined by iteration. Two cases were considered: (1) the population represents an individual; and (2) the population represents a species. The intra-individual and intraspecific variation of Prunus endocarps was studied by analysing the coefficients of variance for dimension and shape parameters. Morphological variation among taxa was assessed using univariate statistics. The influence of the time of sampling and the level of hydration on endocarp dimensions and shape was examined by means of pairwise t-tests. In total, 14 endocarp characters were examined for five Eurasian plum taxa. KEY RESULTS: All linear measurements and index values showed a low or normal variability on the individual and species level. In contrast, the parameter 'Vertical Asymmetry' had high coefficients of variance for one or more of the taxa studied. Of all dimension and shape parameters studied, only 'Triangle' differed significantly between mature endocarps of P. insititia sampled with a time difference of 1 month. The level of hydration affected endocarp dimensions and shape significantly. CONCLUSIONS: Index values and the parameters 'Perimeter', 'Area', 'Triangle', 'Ellipse', 'Circular' and 'Rectangular', based on sample sizes and coefficients of variance, were found to be most appropriate for further taxonomic analysis. However, use of one, single endocarp parameter is not satisfactory for discrimination between Eurasian plum taxa, mainly because of overlapping ranges. Before analysing dried endocarps, full hydration is recommended, as this restores the original dimensions and shape.  相似文献   
10.
Native plant species are routinely planted or sown in ecological restoration projects, but successful establishment and survival depend on where and how seeds are collected. Research suggests that it is important to use locally adapted seeds. Local populations often show a home-site advantage and non-local genotypes may be maladapted to local environmental conditions. Furthermore, intraspecific hybridisation of local and non-local genotypes may have a negative impact on the genetic structure of local populations via mechanisms such as outbreeding depression. Many species show a strong small-scale genetic differentiation between different habitats so that matching habitats of the restoration and donor site can be more important than minimizing geographical separation. It is a challenge to identify appropriate seed sources because strong small-scale population differentiation makes it difficult to delineate geographically defined seed zones to which seed exchange should be limited. Moreover, it is important to consider the genetic diversity of introduced material because it may be crucial to avoid genetic bottlenecks, inbreeding depression and poor establishment of plant populations. Repeated propagation in stock, which is often required to obtain a sufficient amount of seeds, can further reduce genetic diversity and may select for particular genotypes. Negative impacts of improper seed choice for nursery planting stock may become detectable only after many years, especially in long-lived and slow growing plants. Although scientific information on many species remains limited, the increasing demand for translocation of seed means that mandatory regulations are necessary. Guidelines should prescribe a specification of seed provenance, a record of genetic diversity of wild collections and rules for subsequent processing such as direct transfer and propagation of stock or seed orchards. We use a literature review to evaluate current legislation and to develop recommendations for herbaceous and woody species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号