首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   45篇
  543篇
  2022年   6篇
  2021年   15篇
  2020年   15篇
  2019年   9篇
  2018年   11篇
  2017年   9篇
  2016年   21篇
  2015年   20篇
  2014年   20篇
  2013年   28篇
  2012年   37篇
  2011年   36篇
  2010年   26篇
  2009年   23篇
  2008年   28篇
  2007年   26篇
  2006年   26篇
  2005年   17篇
  2004年   18篇
  2003年   13篇
  2002年   11篇
  2001年   8篇
  1999年   10篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   6篇
  1992年   2篇
  1991年   8篇
  1990年   3篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   10篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   10篇
  1974年   8篇
  1973年   7篇
  1972年   3篇
  1971年   2篇
  1968年   2篇
  1966年   2篇
  1939年   1篇
排序方式: 共有543条查询结果,搜索用时 15 毫秒
1.
In a study of Malaysians of different racial groups, 1,510 sera (908 from Malays, 371 from Chinese and 231 from Indians) were identified for their protease inhibitor (Pi) types. The gene frequencies for the alleles PiM, PiS and PiX in Malays were, respectively, 0.979, 0.015, and 0.007. In Chinese, the frequencies were 0.981, 0.019 and 0.000, and in Indians they were 0.976, 0.24, and 0.000. It is interesting that the usually rare PiX type is found in appreciable frequency in the Malays. Two different types with unusual behavior and obscure origin were also found.  相似文献   
2.
A temperature-sensitive mutant of Bacillus subtilis is defective in deoxyribonucleic acid (DNA) synthesis, contains a lesion in the dnaC locus, and is not primarily an initiation mutant. The amount of DNA synthesized by this mutant at temperatures above 40 C decreases with increasing temperature. DNA synthesis resumes within 20 min after the temperature is lowered to 30 C. In the presence of chloramphenical, DNA synthesis begins at a reduced rate after the temperature is lowered to 30 C. Spores germinated at 46 C cannot initiate DNA replication. The capacity for residual DNA synthesis is stable at the restrictive temperature during inhibition of DNA synthesis. When the temperature is lowered to 30 C after a period of incubation at 43 C, DNA synthesis starts at the origin of the chromosome as well as at preexisting growing points. Similar DNA synthesis patterns are found in mutant cells in vivo and after toluene treatment.  相似文献   
3.
Plasmodium falciparum responsible for the most virulent form of malaria invades human erythrocytes through multiple ligand‐receptor interactions. The P. falciparum reticulocyte binding protein homologues (PfRHs) are expressed at the apical end of merozoites and form interactions with distinct erythrocyte surface receptors that are important for invasion. Here using a range of monoclonal antibodies (mAbs) against different regions of PfRH1 we have investigated the role of PfRH processing during merozoite invasion. We show that PfRH1 gets differentially processed during merozoite maturation and invasion and provide evidence that the different PfRH1 processing products have distinct functions during invasion. Using in‐situ Proximity Ligation and FRET assays that allow probing of interactions at the nanometre level we show that a subset of PfRH1 products form close association with micronemal proteins Apical Membrane Antigen 1 (AMA1) in the moving junction suggesting a critical role in facilitating junction formation and active invasion. Our data provides evidence that time dependent processing of PfRH proteins is a mechanism by which the parasite is able to regulate distinct functional activities of these large processes. The identification of a specific close association with AMA1 in the junction now may also provide new avenues to target these interactions to prevent merozoite invasion.  相似文献   
4.
Grapes downy mildew caused by obligate oomycete plant pathogen Plasmopara viticola is a devastating disease worldwide, resulting in significant yield and quality losses. A field survey was conducted in two major grapes cultivated areas of Tamil Nadu for the incidence of grapevine downy mildew. The disease incidence was 43.42%–76.69%, and the highest disease incidence of 76.69% was observed in the Theni district. Totally eight P. viticola isolates were collected from different places in Coimbatore and Theni districts. These isolates were confirmed through microscopic observation and sequencing of COX 2 gene, and the phylogenetic tree was developed to study their phylogenetic relationship among the isolates which shows 97–100% sequence similarity with other P. viticola isolates and less sequence similarity with Plasmopara species. The loop-mediated isothermal amplification (LAMP) assay was developed based on the CesA4 gene sequence of P. viticola. The assay developed was more sensitive as it detected P. viticola genomic DNA up to 20 fmg. LAMP assay specificity was proved by carrying out the assay with genomic DNA extracted from other Oomycetes and fungal plant pathogens. Finally, LAMP assay was validated by testing seventy-eight grapevine leaf samples collected from seven different locations. LAMP assay showed a positive reaction in sixty-two samples tested out of seventy-eight samples tested. Therefore, the LAMP assay described should helpful for early and specific detection of downy mildew pathogen and help in mitigating disease incidence.  相似文献   
5.
Temporin‐1Tl (TL) is a 13‐residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti‐inflammatory activity. To develop novel AMP with improved anti‐inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin‐resistant Staphylococcus aureus strains compared with TL. TL‐1 and TL‐4 showed a little increase in antimicrobial selectivity, while TL‐2 and TL‐3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti‐inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor‐α (TNF‐α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF‐α in lipopolysaccharide (LPS)‐stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti‐inflammatory activity is as follows: TL‐2 ≈ TL‐3 ≈ TL‐4 > TL‐1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti‐inflammatory activity. These results apparently suggest that the anti‐inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti‐inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram‐negative bacterial infection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
6.
Translation of mRNA into a polypeptide is terminated when the release factor eRF1 recognizes a UAA, UAG, or UGA stop codon in the ribosomal A site and stimulates nascent peptide release. However, stop codon readthrough can occur when a near-cognate tRNA outcompetes eRF1 in decoding the stop codon, resulting in the continuation of the elongation phase of protein synthesis. At the end of a conventional mRNA coding region, readthrough allows translation into the mRNA 3’-UTR. Previous studies with reporter systems have shown that the efficiency of termination or readthrough is modulated by cis-acting elements other than stop codon identity, including two nucleotides 5’ of the stop codon, six nucleotides 3’ of the stop codon in the ribosomal mRNA channel, and stem-loop structures in the mRNA 3’-UTR. It is unknown whether these elements are important at a genome-wide level and whether other mRNA features proximal to the stop codon significantly affect termination and readthrough efficiencies in vivo. Accordingly, we carried out ribosome profiling analyses of yeast cells expressing wild-type or temperature-sensitive eRF1 and developed bioinformatics strategies to calculate readthrough efficiency, and to identify mRNA and peptide features which influence that efficiency. We found that the stop codon (nt +1 to +3), the nucleotide after it (nt +4), the codon in the P site (nt -3 to -1), and 3’-UTR length are the most influential features in the control of readthrough efficiency, while nts +5 to +9 had milder effects. Additionally, we found low readthrough genes to have shorter 3’-UTRs compared to high readthrough genes in cells with thermally inactivated eRF1, while this trend was reversed in wild-type cells. Together, our results demonstrated the general roles of known regulatory elements in genome-wide regulation and identified several new mRNA or peptide features affecting the efficiency of translation termination and readthrough.  相似文献   
7.
8.
9.

Sorghum is largely grown for food, fodder and for biofuel production in semi-arid regions where the drought or high temperature or their combination co-occur. Plant microRNAs (miRNAs) are integral to the gene regulatory networks that control almost all biological processes including adaptation to stress conditions. Thus far, plant miRNA profiles under separate drought or heat stresses have been reported but not under combined drought and heat. In this study, we report miRNA profiles in leaves of sorghum exposed to individual drought or heat or their combination. Approximately 29 conserved miRNA families represented by 80 individual miRNAs, 26 families represented by 47 members of less conserved or sorghum-specific miRNA families as well as 8 novel miRNA families have been identified. Of these, 25 miRNAs were found to be differentially regulated in response to stress treatments. The comparative profiling revealed that the miRNA regulation was stronger under heat or combination of heat and drought compared to the drought alone. Furthermore, using degradome sequencing, 48 genes were confirmed as targets for the miRNAs in sorghum. Overall, this study provides a framework for understanding of the miRNA-guided gene regulations under combined stresses.

  相似文献   
10.
FcRn, a non-classical MHCI molecule, transports IgG from mother to young and regulates the rate of IgG degradation throughout life. Brambell proposed a mechanism that unified these two functions, saying that IgG was pinocytosed nonspecifically by the cell into an FcRn-expressing endosome, where, at low pH, it bound to FcRn and was exocytosed. This theory was immediately challenged by claims that FcRn specificity for ligand could be conferred at the cell surface in neonatal jejunum. Assessing Brambell''s hypothesis we found abundant nonspecifically endocytosed IgG present in the cytoplasm of FcRn−/− enterocytes. Further, IgG was present in the intercellular clefts and the cores of FcRn+/+ but not FcRn−/− jejunum. FcRn specificity for ligand could be determined within the cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号