首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2022年   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Chromosoma - Long transgenes are often used in mammalian genetics, e.g., to rescue mutations in large genes. In the course of experiments addressing the genetic basis of hybrid sterility caused by...  相似文献   
2.
Gasic  Srdjan  Mihola  Ondrej  Trachtulec  Zdenek 《Mammalian genome》2022,33(4):590-605
Mammalian Genome - Aneuploidy (abnormal chromosome number) accompanies reduced ovarian function in humans and mice, but the reasons behind this concomitance remain underexplored. Some variants in...  相似文献   
3.
4.
PR-domain 9 (Prdm9) is the first hybrid sterility gene identified in mammals. The incompatibility between Prdm9 from Mus musculus domesticus (Mmd; the B6 strain) and the Hstx2 region of chromosome (Chr) X from M. m. musculus (Mmm; the PWD strain) participates in the complete meiotic arrest of mouse intersubspecific (PWD×B6)F1 hybrid males. Other studies suggest that also semisterile intersubspecific hybrids are relevant for mouse speciation, but the genes responsible remain unknown. To investigate the causes of this semisterility, we analyzed the role of Prdm9 and Chr X in hybrids resulting from the crosses of PWK, another Mmm-derived inbred strain. We demonstrate that Prdm9 and Chr X control the partial meiotic arrest and reduced sperm count in (PWK×B6)F1 males. Asynapsis of heterosubspecific chromosomes and semisterility were partially suppressed by removal of the B6 allele of Prdm9. Polymorphisms between PWK and PWD on Chr X but not in the Prdm9 region were responsible for the modification of the outcome of Prdm9 - Chr X F1 hybrid incompatibility. Furthermore, (PWK×B6)F1 hybrid males displayed delayed fertility dependent on the Prdm9 incompatibility. While the Drosophila hybrid sterility gene Overdrive causes both delayed fertility and increased transmission of its own chromosome to the offspring, the segregation of Chr X and the Prdm9 region from the mouse (PWK×B6)F1 males was normal. Our results indicate extended functional consequences of Prdm9 - Chr X intersubspecific incompatibility on the fertility of hybrids and should influence the design of fertility analyses in hybrid zones and of laboratory crosses between Mmm and Mmd strains.  相似文献   
5.
Extensive linkage disequilibrium among classical laboratory strains represents an obstacle in the high-resolution haplotype mapping of mouse quantitative trait loci (QTL). To determine the potential of wild-derived mouse strains for fine QTL mapping, we constructed a haplotype map of a 250-kb region of the t-complex on chromosome 17 containing the Hybrid sterility 1 (Hst1) gene. We resequenced 33 loci from up to 80 chromosomes of five mouse (sub)species. Trans-species single-nucleotide polymorphisms (SNPs) were rare between Mus m. musculus (Mmmu) and Mus m. domesticus (Mmd). The haplotypes in Mmmu and Mmd differed and therefore strains from these subspecies should not be combined for haplotype-associated mapping. The haplotypes of t-chromosomes differed from all non-t Mmmu and Mmd haplotypes. Half of the SNPs and SN indels but only one of seven longer rearrangements found in classical laboratory strains were useful for haplotype mapping in the wild-derived M. m. domesticus. The largest Mmd haplotype block contained three genes of a highly conserved synteny. The lengths of the haplotype blocks deduced from 36 domesticus chromosomes were in tens of kilobases, suggesting that the wild-derived Mmd strains are suitable for fine interval-specific mapping.  相似文献   
6.
Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.  相似文献   
7.
Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9 +/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号