首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   9篇
  2022年   1篇
  2021年   6篇
  2019年   1篇
  2018年   3篇
  2016年   7篇
  2015年   6篇
  2014年   12篇
  2013年   10篇
  2012年   17篇
  2011年   11篇
  2010年   6篇
  2009年   6篇
  2008年   13篇
  2007年   6篇
  2006年   6篇
  2005年   9篇
  2004年   9篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1977年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
1.
The underlying mechanisms of probiotics and postbiotics are not well understood, but it is known that both affect the adaptive and innate immune responses. In addition, there is a growing concept that some probiotic strains have common core mechanisms that provide certain health benefits. Here, we aimed to elucidate the signalization of the probiotic bacterial strains Lactobacillus paragasseri K7, Limosilactobacillus fermentum L930BB, Bifidobacterium animalis subsp. animalis IM386 and Lactiplantibacillus plantarum WCFS1. We showed in in vitro experiments that the tested probiotics exhibit common TLR2‐ and TLR10‐dependent downstream signalling cascades involving inhibition of NF‐κB signal transduction. Under inflammatory conditions, the probiotics activated phosphatidylinositol 3‐kinase (PI3K)/Akt anti‐apoptotic pathways and protein kinase C (PKC)‐dependent pathways, which led to regulation of the actin cytoskeleton and tight junctions. These pathways contribute to the regeneration of the intestinal epithelium and modulation of the mucosal immune system, which, together with the inhibition of canonical TLR signalling, promote general immune tolerance. With this study we identified shared probiotic mechanisms and were the first to pinpoint the role of anti‐inflammatory probiotic signalling through TLR10.  相似文献   
2.
3.

Background

Architectural proteins have important roles in compacting and organising chromosomal DNA. There are two potential histone counterpart peptide sequences (Alba1 and Alba2) in the Aeropyrum pernix genome (APE1832.1 and APE1823).

Methodology/Principal Findings

These two peptides were expressed and their interactions with various DNAs were studied using a combination of various experimental techniques: surface plasmon resonance, UV spectrophotometry, circular dichroism–spectropolarimetry, gel-shift assays, and isothermal titration calorimetry.

Conclusions/Significance

Our data indicate that there are significant differences in the properties of the Alba1 and Alba2 proteins. Both of these Alba proteins can thermally stabilise DNA polynucleotides, as seen from UV melting curves. Alba2 and equimolar mixtures of Alba1/Alba2 have greater effects on the thermal stability of poly(dA-dT).poly(dA-dT). Surface plasmon resonance sensorgrams for binding of Alba1, Alba2, and equimolar mixtures of Alba1/Alba2 to DNA oligonucleotides show different binding patterns. Circular dichroism indicates that Alba2 has a less-ordered secondary structure than Alba1. The secondary structures of the Alba proteins are not significantly influenced by DNA binding, even at high temperatures. Based on these data, we conclude that Alba1, Alba2, and equimolar mixtures of Alba1/Alba2 show different properties in their binding to various DNAs.  相似文献   
4.
The solution-state structure of 2′-O-(2-methoxyethly) substituted dodecamer r(*CG*CGAA*U*U*CG*C)d(G), 2′-MOE RNA, with all cytosines and uracils methylated at the C5-position has been determined by NMR spectroscopy. The chemical modifications were used to improve the oligonucleotide's drug-like properties. The 2′-MOE group drives pseudorotational equilibrium of the ribofuranose moiety to the N-type conformation and supposedly results in structural preorganization leading to high affinity of a modified oligonucleotide towards its complementary biological target, improved pharmacokinetic and toxicological properties. The high melting temperature of the antiparallel duplex structure adopted by 2′-MOE RNA was explained through the formation of a stable A-form RNA consistent with effective base-pairing and stacking interactions. The comparison of the solution-state structure with the crystal structure of a non-methylated analogue shows an increase in the stacking at the base pair steps for the C5-methylated 2′-MOE RNA duplex. The MOE substituents adopt a well-defined structure in the minor groove with the predominant gauche conformations around the ethylene bond.  相似文献   
5.
6.
Japelj B  Waltho JP  Jerala R 《Proteins》2004,54(3):500-512
Three-dimensional domain swapping has been observed in increasing number of proteins and has been implicated in the initial stages of protein aggregation, including that of the cystatins. Stefin A folds as a monomer under native conditions, while under some denaturing conditions domain-swapped dimer is formed. We have determined the backbone dynamics of the monomeric and domain-swapped dimeric forms of stefin A by (15)N relaxation using a model-free approach. The overall correlation times of the molecules were determined to be 4.6 +/- 0.1 ns and 9.2 +/- 0.2 ns for the monomer and the dimer, respectively. In the monomer, decreased order parameters indicate an increased mobility for the N-terminal trunk, the first and the second binding loops. At the opposite side of the molecule, the loop connecting the alpha-helix with strand B, the beginning of strand B and the loop connecting strands C and D show increased localized mobility. In the domain-swapped dimer, a distinctive feature of the structure is the concatenation of strands B and C into a single long beta-strand. The newly formed linker region between strands B and C, which substitutes for the first binding loop in the monomer, has order parameters typical for the remainder of the beta-strands. Thus, the interaction between subunits that occurs on domain-swapping has consequences for the dynamics of the protein at long-range from the site of conformational change, where an increased rigidity in the newly formed linker region is accompanied by an increased mobility of loops remote from that site.  相似文献   
7.
Mur ligases play an essential role in the intracellular biosynthesis of bacterial peptidoglycan, the main component of the bacterial cell wall, and represent attractive targets for the design of novel antibacterials. UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD) catalyses the addition of D-glutamic acid to the cytoplasmic intermediate UDP-N-acetylmuramoyl-L-alanine (UMA) and is the second in the series of Mur ligases. MurD ligase is highly stereospecific for its substrate, D-glutamic acid (D-Glu). Here, we report the high resolution crystal structures of MurD in complexes with two novel inhibitors designed to mimic the transition state of the reaction, which contain either the D-Glu or the L-Glu moiety. The binding modes of N-sulfonyl-D-Glu and N-sulfonyl-L-Glu derivatives were also characterised kinetically. The results of this study represent an excellent starting point for further development of novel inhibitors of this enzyme.  相似文献   
8.
9.
Prion diseases are fatal neurodegenerative diseases, which can be acquired, sporadic or genetic, the latter being linked to mutations in the gene encoding prion protein. We have recently described the importance of subdomain separation in the conversion of prion protein (PrP). The goal of the present study was to investigate the effect of increasing the hydrophobic interactions within the H2-H3 subdomain on PrP conversion. Three hydrophobic mutations were introduced into PrP. The mutation V209I associated with human prion disease did not alter protein stability or in vitro fibrillization propensity of PrP. The designed mutations V175I and T187I on the other hand increased protein thermal stability. V175I mutant fibrillized faster than wild-type PrP. Conversion delay of T187I was slightly longer, but fluorescence intensity of amyloid specific dye thioflavin T was significantly higher. Surprisingly, cells expressing V209I variant exhibited inefficient proteinase K resistant PrP formation upon infection with 22L strain, which is in contrast to cell lines expressing wild-type, V175I and T187I mPrPs. In agreement with increased ThT fluorescence at the plateau T187I expressing cell lines accumulated an increased amount of the proteinase K-resistant prion protein. We showed that T187I induces formation of thin fibrils, which are absent from other samples. We propose that larger solvent accessibility of I187 in comparison to wild-type and other mutants may interfere with lateral annealing of filaments and may be the underlying reason for increased conversion efficiency.  相似文献   
10.
We describe here the fragment-based design of potent DNA gyrase inhibitors. Using the tools of virtual screening and NMR spectroscopy we identified the binding of two low-molecular weight fragments (2-aminobenzimidazole and indolin-2-one) to the 24kDa N-terminal fragment of DNA gyrase B. Further in silico optimization of indolin-2-one led to the discovery of potent DNA gyrase inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号