首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2016年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The causes and timing of seed death in early regeneration process of Siebold's beech (Fagus crenata Blume) was studied at 15 sites along a snowfall gradient in Japan, in order to clarify why the seedling density of the species has geographic difference remarkably. Seed production did not significantly differ along the snowfall gradient. Pre-dispersal seed mortality by insect damage was higher at sites with light snowfall than at sites with heavy snowfall, but this only seemed to be a minor factor influencing the population. A large proportion of the viable nuts that fall in autumn ware killed in winter before germination. Winter mortality was much higher at sites with thin snow cover than that at sites with thick snow cover, and this factor was strongly correlated with the geographic variation of seedling regeneration probability. There was little seed mortality by winter desiccation. The main factor contributing to the geographic difference seemed to be a seed predation by rodents in winter. Deep snow cover may reduce the success of rodents finding seeds in winter. Thus the observed relationship between snowpack depth and early mortality may be due to an indirect effect through the process of seed predation.p>  相似文献   
2.
3.
4.
Abstract. Question: The aim of the present study is to determine whether seed/seedling predation will increase and Fagus survival will decline with the recovery of the Sasa cover. Methods: We examined Fagus crenata regeneration for seven years in an old‐growth Fagus‐Sasa forest near Lake Towada, northern Japan, by examining the effects of simultaneous death of Sasa, tree canopy gap formation, mast seeding of Fagus and seed and seedling predation by rodents on the survival of Fagus seeds and current year seedlings. We established four types of sites differing in forest canopy (closed or gap) and Sasa status (dead or alive) following the simultaneous flowering and death of Sasa kurilensis (dwarf bamboo) in 1995. Results: Fallen Fagus seed was abundant in 1997 and 2000 (mast years). In sites with alive Sasa, survival from the first growing season was low due to high seed and seedling predation. In sites with dead Sasa, seed survival under the canopy was high for both mast years, but in gaps it varied between years. Seedling survival was highest in canopy gaps with dead Sasa (gap‐dead) in 1998, because of higher light levels and lower predation by rodents. However, seedling survival in these plots was low in 2001, apparently because rapid Sasa recovery favoured rodent predation. In both mast years, Sasa die‐back had significant positive effects on seed and seedling survival under closed canopies because the seedlings there were more successful in escaping predation. Conclusion: The change in successful sites for the early stage of regeneration of Fagus appears to reflect the combined effects of canopy gap, seed/seedling predation and revegetation of Sasa.  相似文献   
5.
To clarify the interactive effect of the simultaneous death of dwarf bamboo (Sasa kurilensis), forest canopy gap formation, and seed predators on beech (Fagus crenata) regeneration, we analyzed beech demography from seed fall until the end of the first growing season of seedlings in an old-growth forest near Lake Towada, northern Japan. The simultaneous death of S. kurilensis took place in 1995. We established four types of sampling site differing in forest canopy conditions (closed or gap) and Sasa status (dead or alive). Beech seed survival and emergence ratio were both highest in gaps with dead Sasa (gap-dead), because rate of predation was lowest. Seedling survival during the first growing season was also highest in the gap-dead treatment, because of less predation and less damping off. As a result, even though density of seed fall was lowest in the gap-dead treatment, the living seedling density there was highest at the end of the first growing season. Predation, which caused the greatest mortality during the seed and seedling stages, was significantly lower at both sites in gaps and sites with dead Sasa. This was probably due to changes in the behavior of rodents in response to the structure of the forest canopy and undergrowth. Both the death of Sasa and canopy gap formation allowed seedlings to avoid damping off because of the high light availability. The indirect effect of the simultaneous death of Sasa and canopy gap formation in reducing predation contributed more to beech regeneration than their direct effect in increasing light for the seedlings.  相似文献   
6.
Abstract. We examined the response of tree seedling emergence and survival to the dieback of Sasa and canopy gap formation in an old‐growth forest near Lake Towada, northern Japan. Synchronous death of Sasa occurred in 1995. We established four types of sampling sites differing in forest canopy conditions (Closed or Gap) and Sasa status (Dead or Live). Gap‐Dead sites had the highest light levels and the greatest fluctuation in soil temperatures. The death of Sasa alone facilitated the emergence (Acer japonicum, Fagus crenata, Fraxinus lanuginosa, and Tilia japonica) and survival (Acanthopanax sciadophylloides, F. crenata, F. lanuginosa, Kalopanax pictus, and Sorbus commixta) of species with a seedling bank strategy. Cercidiphyllum japonicum grew at all sites at a higher density than other species, but survived well only in Gap‐Dead sites. This behaviour was associated with a seed rain strategy. The additive effects of Sasa death and canopy gap formation promoted seedling emergence of pioneer tree species (Betula maximowicziana, Lindera umbellata, and Magnolia obovata), probably through break of dormancy by the large temperature fluctuation. In addition, the scarcity of advance regeneration in canopy gaps due to Sasa cover facilitates the regeneration of pioneer species. The dominance and dieback cycle of Sasa contributes to species diversity in this forest.  相似文献   
7.
To examine how early-emerging seedlings take advantage of establishment in a deciduous forest, we explored the relationships among the emergence date, growth stage and major causes of mortality (damping-off by fungi and predation by rodents) in seedlings of Fagus crenata. The emergence of current-year seedlings and their survival and damage were followed at short (3–7 days in early spring) intervals for a growing season. The growth stage was divided into two stages, with only cotyledons (CT stage) and with true leaves (TL stage). The survival rate was negatively correlated with the emergence date, indicating the advantage of early seedling emergence. This advantage was largely explained by the lower occurrence of damping-off. In contrast, seedling predation occurred independently of the emergence date, but depended strongly on the developmental stage. Rodents consumed a considerable number of seeds during the early period after emergence, and strongly preferred CT-stage over TL-stage seedlings throughout the growing season. Therefore, seedling predation was inferred to be concentrated in a relatively short period while the remaining seeds were depleted and CT-stage seedlings were abundant. The seedling stage synchronously shifted from the CT to TL stage. This growth-stage transition was independent of the emergence date and appeared to correspond with the timing of seed depletion. Delayed stage transition resulted in a disproportionately high risk of damping-off later in the season. Our results indicate that early seedling emergence is advantageous for F. crenata for resistance to pathogens and that the timing of growth-stage progression of seedlings appears important to escape predation because of the distinct food preference of predators.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号