首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
  52篇
  2021年   2篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   8篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1993年   1篇
  1992年   3篇
  1990年   3篇
  1989年   3篇
  1987年   2篇
排序方式: 共有52条查询结果,搜索用时 0 毫秒
1.

Background

Depression and anxiety disorders have a high disease burden and as many as 15% of young people report mental health problems. Binge drinking, which is a particularly harmful way of consuming alcohol, is common among secondary school students. The aim of this study was to examine the association between binge drinking and self-reported mental health in boys and girls aged 12 to 18 years.

Findings

This cross-sectional analysis was performed on data collected by the Community Health Service (GGD) Brabant Zuidoost, the Netherlands, in 2007. In this Youth Survey, 10 090 randomly selected adolescents aged 12 tot 18 years were each sent a letter, a questionnaire, and a user name and log-in code for if they preferred to complete the Internet version of the questionnaire. Mental health was assessed using the Mental Health Inventory (MHI-5), a short 5-item questionnaire to detect feelings of depression and anxiety. Participants were asked about current alcohol consumption, their relationship with their parents, drug use, and sociodemographic data. Corrected for confounders, binge drinking and mental health problems were associated in the 12 to 15 year old girls (OR 2.43; 95% CI 1.86-3.17, p = 0.000) and boys (OR 1.64, 95% CI 1.19-2.27, p = 0.003). The majority of the 16 to 18 year old adolescents had been binge drinking in the previous 4 weeks (69.6% boys and 56.8% girls). In this age group, boys with mental health problems were less likely to be classified as binge drinkers than were boys without mental health problems (OR 0.63, 95% CI 0.45-0.87, p = 0.005). No such association between binge drinking and mental health was found in girls of this age.

Conclusion

Girls and boys aged 12-15 years were classified as binge drinkers significantly more often when they reported poor mental health. Because binge drinking damages the brain, especially at a young age, it is important that health professionals are alert to possible binge drinking when young adolescents report mental health problems and should ask their patients about their drinking behaviour. Likewise, if youngsters under 16 present with binge drinking, they should be asked whether they are anxious or depressed.  相似文献   
2.
3.
Older individuals' ability to maintain core temperature during cold stress is impaired; however, the relative importance of individual characteristics that influence this response are unknown. The purpose of this study was to determine the relative influence of individual characteristics on core temperature and tissue insulation (I(t)) during mild cold stress. Forty-two young (23 +/- 1 yr, range 18-30 yr) and 46 older (71 +/- 1 yr, range 65-89 yr) subjects, varying widely in muscularity, adiposity, and body size, underwent a transient cooling protocol during which esophageal temperature (T(es)) was measured continuously and I(t) was calculated using standard equations. Multiple-regression analyses were performed to determine predictors of T(es) and I(t), and standardized regression coefficients were analyzed to determine the relative influence of each predictor. Candidate predictors included age, sex, weight, body surface area, body surface area-to-mass ratio, sum of skinfolds, percent fat, appendicular skeletal muscle mass, and thyroid hormone concentrations (triiodothyronine, thyronine). The sum of skinfolds explained 67% (P < 0.01) of the T(es) variance in young subjects vs. 2% (P = 0.30) in older subjects. Conversely, appendicular skeletal muscle mass explained a greater portion of the variance in older subjects for both T(es) (older: 28%, P < 0.01; young: 8%, not significant) and I(t) (older: 46%, P < 0.01; young: 17%, P < 0.01). The T(es) residual variance was considerably larger in older subjects (59-72% vs. 14-42% in young subjects), possibly due to varying rates of physiological aging. These results suggest that the relative influence of individual characteristics changes with aging.  相似文献   
4.
A population-based dynamic model of human thermoregulation was expanded with control equations incorporating the individual person's characteristics (body surface area, mass, fat%, maximal O(2) uptake, acclimation). These affect both the passive (heat capacity, insulation) and active systems (sweating and skin blood flow function). Model parameters were estimated from literature data. Other data, collected for the study of individual differences (working at relative or absolute workloads in hot-dry [45 degrees C, 20% relative humidity (rh)], warm-humid [35 degrees C, 80% rh], and cool [21 degrees C, 50% rh] environments), were used for validation. The individualized model provides an improved prediction [mean core temperature error, -0.21 --> -0.07 degrees C (P < 0.001); mean squared error, 0.40 --> 0.16 degrees C, (P < 0.001)]. The magnitude of improvement varies substantially with the climate and work type. Relative to an empirical multiple-regression model derived from these specific data sets, the analytical simulation model has between 54 and 89% of its predictive power, except for the cool climate, in which this ratio is zero. In conclusion, individualization of the model allows improved prediction of heat strain, although a substantial error remains.  相似文献   
5.
An experiment was set up to quantify the relative influence of fitness, acclimatization, gender and anthropometric measures on physiological responses to heat stress. For this purpose, 12 male and 12 female subjects were exposed to a neutral [ambient temperature (Ta) 21 degrees C, relative humidity (r.h. 50%)], a warm, humid (Ta 34 degrees C, r.h. 80%) and a hot, dry (Ta 45 degrees C, r.h. 20%) climate at rest and at two exercise intensities [25%, and 45% maximal O2 intake (VO2max)], seated seminude in a net chair behind a cycle ergometer. Their physiological responses were recorded and the data submitted to a multiple regression analysis. It was shown that for the variance in heat storage, the percentage of body fat and the surface to mass ratio had relatively the largest influence of all the individual parameters, followed by VO2max and the sweat rate versus increase in core temperature (total r2 = 92%). For the skin temperature variation, the relative influence of individual parameters (sweat gain, VO2max) was small. For body core temperatures, individual parameters had a large influence. The largest effect was due to the percentage of fat and the surface to mass ratio, followed by the sweating setpoint and, finally, VO2max (total r2 = 54%-70%). For the variance in heart rate the VO2max was the most relevant parameter, followed by the setpoint of the sweat rate:rectal temperature relationship (total r2 = 88%). Blood pressure and skin blood flow predictions were also shown to improve by the addition of individual characteristics to the model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
The Universal Thermal Climate Index (UTCI) aimed for a one-dimensional quantity adequately reflecting the human physiological reaction to the multi-dimensionally defined actual outdoor thermal environment. The human reaction was simulated by the UTCI-Fiala multi-node model of human thermoregulation, which was integrated with an adaptive clothing model. Following the concept of an equivalent temperature, UTCI for a given combination of wind speed, radiation, humidity and air temperature was defined as the air temperature of the reference environment, which according to the model produces an equivalent dynamic physiological response. Operationalising this concept involved (1) the definition of a reference environment with 50% relative humidity (but vapour pressure capped at 20 hPa), with calm air and radiant temperature equalling air temperature and (2) the development of a one-dimensional representation of the multivariate model output at different exposure times. The latter was achieved by principal component analyses showing that the linear combination of 7 parameters of thermophysiological strain (core, mean and facial skin temperatures, sweat production, skin wettedness, skin blood flow, shivering) after 30 and 120 min exposure time accounted for two-thirds of the total variation in the multi-dimensional dynamic physiological response. The operational procedure was completed by a scale categorising UTCI equivalent temperature values in terms of thermal stress, and by providing simplified routines for fast but sufficiently accurate calculation, which included look-up tables of pre-calculated UTCI values for a grid of all relevant combinations of climate parameters and polynomial regression equations predicting UTCI over the same grid. The analyses of the sensitivity of UTCI to humidity, radiation and wind speed showed plausible reactions in the heat as well as in the cold, and indicate that UTCI may in this regard be universally useable in the major areas of research and application in human biometeorology.  相似文献   
7.
The investigation of distributed coding across multiple neurons in the cortex remains to this date a challenge. Our current understanding of collective encoding of information and the relevant timescales is still limited. Most results are restricted to disparate timescales, focused on either very fast, e.g., spike-synchrony, or slow timescales, e.g., firing rate. Here, we investigated systematically multineuronal activity patterns evolving on different timescales, spanning the whole range from spike-synchrony to mean firing rate. Using multi-electrode recordings from cat visual cortex, we show that cortical responses can be described as trajectories in a high-dimensional pattern space. Patterns evolve on a continuum of coexisting timescales that strongly relate to the temporal properties of stimuli. Timescales consistent with the time constants of neuronal membranes and fast synaptic transmission (5-20 ms) play a particularly salient role in encoding a large amount of stimulus-related information. Thus, to faithfully encode the properties of visual stimuli the brain engages multiple neurons into activity patterns evolving on multiple timescales.  相似文献   
8.
The relationship between local thermal comfort, local skin wettedness (wlocal) and local galvanic skin conductance (GSC) in four body segments during two different exercise intensities was compared in 10 males. In a balanced order, participants walked at 35% VO2max for 45 min (WALK) (29.0±1.9°C, 29.8±3.6% RH, no wind) in one test and in a separate test ran at 70% VO2max for 45 min (RUN) (26.2±2.1°C, 31.1±7.0% RH, no wind). During both tests, participants wore a loose fitting 100% polyester long sleeve top and trouser ensemble with a low resistance to heat and vapour transfer (total thermal resistance of 0.154 m2 K W−1 and total water vapour resistance of 35.9 m2 Pa W−1). wlocal, change from baseline in GSC (ΔGSC) and local thermal comfort were recorded every 5 min. The results suggest that both wlocal and ΔGSC are strong predictors of thermal comfort during the WALK when sweat production is low and thermal discomfort minimal (r2>0.78 and r2>0.71, respectively). Interestingly, during the RUN wlocal plateaued at ~0.6 to 0.8 due to the high sweat production, whilst ΔGSC gradually increased throughout the experiment. ΔGSC had a similar relationship with thermal comfort to wlocal during the RUN (r2>0.95 and r2>0.94, respectively). Despite the strength of these relationships, the ability of wlocal to predict local thermal comfort accurately dramatically reduces in the exponential part of the curve. In a situation of uncompensated heat stress such as high metabolic rate in hot climate, where sweat production is high, ΔGSC shows to be a better predictor of local thermal comfort than wlocal. The wlocal data shows regional differences in the threshold which triggers local discomfort during the WALK than RUN; lower values are found for upper arms (0.22±0.03 and 0.28 ±0.22) and upper legs (0.22±0.11 and 0.22±0.10), higher values for upper back (0.30±0.12 and 0.36 ±0.10) and chest (0.27±0.10 and 0.39 ±0.32), respectively. However, no regional differences in the threshold of discomfort are found in the ?GSC data. Instead, the data suggests that the degree of discomfort experienced appears to be related to the amount of sweat within and around the skin (as indirectly measured by ΔGSC) at each body site.  相似文献   
9.
The bacterial mutagenic response (Ames-assay, Salmonella typhimurium strain TA98+/-S9-mix) of a series of monocyclopenta-fused polycyclic aromatic hydrocarbons (CP-PAHs) identified in combustion exhausts, viz. cyclopenta[cd]pyrene (1), acephenanthrylene (2), aceanthrylene (3) and cyclopenta[hi]chrysene (4), is re-evaluated. The mutagenic effects are compared with those exerted by the corresponding partially hydrogenated derivatives, 3,4-dihydrocyclopenta[cd]pyrene (5), 4,5-dihydroacephenanthrylene (6), 1,2-dihydroaceanthrylene (7) and 4,5-dihydrocyclopenta[hi]chrysene (8). It is shown that the olefinic bond of the externally fused five-membered ring of 1, 3 and 4 is of importance for a positive mutagenic response. In contrast, whilst CP-PAH 2 is found inactive, its dihydro analogue (6) shows a weak metabolism-dependent response. The importance of epoxide formation at the external olefinic bond in the five-membered ring is substantiated by the bacterial mutagenic response of independently synthesized cyclopenta[cd]pyrene-3,4-epoxide (9), acephenanthrylene-4,5-epoxide (10), aceanthrylene-1,2-epoxide (11) and cyclopenta[hi]chrysene-4,5-epoxide (12). Their role as ultimate, active mutagenic forms, when CP-PAHs 1, 3 and 4 exhibit a positive mutagenic response, is confirmed. Semi-empirical Austin Model 1 (AM1) calculations on the formation of the CP-arene oxides (9-12) and their conversion into the monohydroxy-carbocations (9a-12a and 9b-12b) via epoxide-ring opening support our results. For 2 and 4, which also possess a bay-region besides an annelated cyclopenta moiety, the calculations rationalize that epoxidation at the olefinic bond of the cyclopenta moiety is favoured.  相似文献   
10.
Although several studies have compared thermal sensitivity between body segments, little is known on regional variations within body segments. Furthermore, the effects of exercise on the thermal sensation resulting from a cold stimulus remain unclear. The current experiment therefore aimed to explore inter- and intra-segmental differences in thermal sensitivity to cold, at rest and during light exercise. Fourteen male participants (22.3±3.1 years; 181.6±6.2 cm; 73.7±10.3 kg) were tested at rest and whilst cycling at 30% VO2 max. Sixteen body sites (front torso=6; back=6; arms=4) were stimulated in a balanced order, using a 20 °C thermal probe (25 cm2) applied onto the skin. Thermal sensations resulting from the stimuli were assessed using an 11-point cold sensation scale (0=not cold; 10=extremely cold). Variations were found within body segments, particularly at the abdomen and mid-back where the lateral regions were significantly more sensitive than the medial areas. Furthermore, thermal sensations were significantly colder at rest compared to exercise in 12 of the 16 body sites tested. Neural and hormonal factors were considered as potential mechanisms behind this reduction in thermal sensitivity. Interestingly, the distribution of cold sensations was more homogenous during exercise. The present data provides evidence that thermal sensitivity to cold varies within body segments, and it is significantly reduced in most areas during exercise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号