首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   5篇
  2021年   4篇
  2019年   4篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1993年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
1.

Background  

The integration of many aspects of protein/DNA structure analysis is an important requirement for software products in general area of structural bioinformatics. In fact, there are too few software packages on the internet which can be described as successful in this respect. We might say that what is still missing is publicly available, web based software for interactive analysis of the sequence/structure/function of proteins and their complexes with DNA and ligands. Some of existing software packages do have certain level of integration and do offer analysis of several structure related parameters, however not to the extent generally demanded by a user.  相似文献   
2.
Midwood  A.J.  Boutton  T.W.  Archer  S.R.  Watts  S.E. 《Plant and Soil》1998,205(1):13-24
In savanna parklands of southern Texas, patches of grassland and discrete clusters of small trees and shrubs occur on sandy loam surface soils underlain by an argillic horizon (claypan) at 40 cm. Large trees and shrubs in groves occur on deep (2 m) sandy loam soils without an argillic horizon. 2H and 18O of rainfall, groundwater, and soil and plant water were measured to: (1) determine if coexistence in woody patches occurs via vertical stratification of soil water uptake; (2) document differences in plant water acquisition on contrasting soil types; and (3) evaluate recharge and evaporative losses of soil moisture from grassland vs. wooded landscape elements. Groundwater was isotopically similar to weighted rainfall, suggesting local recharge at this site. Linear regressions of soil water 2H on 18O yielded slopes less than the meteoric water line, indicating significant evaporative losses of soil moisture in all landscape elements. Interspecific differences in root density distribution were significant; some woody species had roots well below 1.6 m, while others had few roots below 0.8 m. 2H and 18O values of stem water from all plants in groves were lower than those of soil water in the upper 1.5 m of the profile, suggesting all species obtained their water from depths >1.5 m. Deep roots of trees and shrubs at this savanna parkland site thus appeared to have a functional significance that was not revealed by biomass or density determinations. Root densities of species in discrete clusters (claypan present) were typically greater than those of the same species in groves (claypan absent), especially in the upper 80 cm of the soil profile. Consistent with rooting profiles, 2H and 18O values of plant water indicated that trees and shrubs in discrete clusters with fine- textured subsoils obtained most of their water at depths <1.5 m. As with groves, there was no indication of water resource partitioning between species. In summary, we saw no isotopic evidence that co- occurring woody plants at this savanna parkland site were partitioning soil moisture vertically during late summer/early fall, despite marked differences in their root density distributions. This supports other lines of evidence which indicate that species interactions in tree/shrub clumps are competitive, and that species composition is therefore unstable in those landscape elements.  相似文献   
3.

Background  

Pichia pastoris has been recognized as an effective host for recombinant protein production. A number of studies have been reported for improving this expression system. However, its physiology and cellular metabolism still remained largely uncharacterized. Thus, it is highly desirable to establish a systems biotechnological framework, in which a comprehensive in silico model of P. pastoris can be employed together with high throughput experimental data analysis, for better understanding of the methylotrophic yeast's metabolism.  相似文献   
4.
Despite their often physical connection, neighbouring stormwater drains and urban streams are typically managed quite differently; with drains mostly regarded as poor fish habitat. The goal of this study was to evaluate the interconnectedness of an urban stream (Watts Creek) and adjoining earthen surface stormwater drain (Kizell Drain) from the perspective of fish residency and movements over an entire year. Using a stationary passive integrated transponder (PIT) array, we quantified and compared the direction of movements among Watts Creek, Kizell Drain, and the area downstream of their confluence (herein termed Main) for four common stream fishes. We also determined the residency time (percentage of total time in days) within each of these reaches by combining data from the array and recaptured (with electrofishing and identified with hand-held PIT reader) or portably detected (with mobile PIT reader) fish. While the movements of creek chub (Semotilus atromaculatus) and central mudminnow (Umbra limi) varied across seasons, creek chub resided significantly longer in Watts, while central mudminnow spent more time in Kizell and Main. Longnose dace (Rhinichthys cataractae) moved into and resided most often within Watts. The movements and residency time for white sucker (Catostomus commersonii) did not vary among the reaches. We conclude there is a high degree of connectivity between Watts Creek and Kizell Drain and that, with the exception of longnose dace, the three other species utilize the habitat available in Kizell. This study demonstrates the biological potential of earthen stormwater drains and as a result we recommend these systems be managed as a functional component of urban watersheds.  相似文献   
5.

Introduction

The aim of this study was to examine whether circulating levels of the pro-inflammatory glycoprotein tenascin-C (TNC) are elevated in musculoskeletal disorders including rheumatoid arthritis (RA) and to assess in RA whether levels are related to clinical disease status and/or patient response to treatment.

Methods

TNC in serum or plasma was quantified by ELISA. Samples from 4 cohorts of RA patients were examined and compared to normal human subjects and to patients with other inflammatory diseases.

Results

Circulating TNC levels were significantly raised in patients with RA, as well as patients with systemic lupus erythematosus, idiopathic inflammatory myositis, psoriatic arthritis and ankylosing spondylitis, whilst patients with Sjogren''s syndrome displayed levels similar to healthy controls. The highest levels of TNC were observed in RA patients with late stage disease. In early disease TNC levels correlated positively with ultrasound determined erosion scores. Treatment of early RA patients with infliximab plus methotrexate (MTX) resulted in a transient decrease in circulating TNC over the first year of therapy. In contrast, TNC levels increased over time in RA patients receiving MTX alone. In patients treated with infliximab plus MTX, baseline TNC levels significantly correlated with tender joint counts (TJC) at 18 and 54 weeks after initiation of infliximab therapy.

Conclusions

Raised circulating TNC levels are detected in specific inflammatory diseases. Levels are especially high in RA where they may act as a biomarker of bone erosion and a predictor of the effect of infliximab on RA patient joint pain.  相似文献   
6.
Aquatic vegetation in the relatively pristine coastal wetlands of eastern Georgian Bay provides critical habitat for a diverse fish community. Declining water levels in Lake Huron over the past decade, however, have altered the wetland plant assemblages in favour of terrestrial (emergent and meadow) taxa and have thus reduced or eliminated this important ecosystem service. In this study, we compared IKONOS satellite images for two regions of eastern Georgian Bay (acquired in 2002 and 2008) to determine significant changes in cover of four distinct wetland vegetation groups [meadow (M), emergent (E), high‐density floating (HD) and low‐density floating (LD)] over the 6 years. While LD decreased significantly (mean ?2995.4 m2), M and HD increased significantly (mean +2020.9 m2 and +2312.6 m2, respectively) between 2002 and 2008. Small patches of LD had been replaced by larger patches of HD. These results show that sustained low water levels have led to an increasingly homogeneous habitat and an overall net loss of fish habitat. A comparison of the fish communities sampled between 2003 and 2005 with those sampled in 2009 revealed that there was a significant decline in species richness. The remaining fish communities were also more homogeneous. We suggest that the observed changes in the wetland plant community due to prolonged low water levels may have resulted in significant changes in the fish communities of coastal wetlands in eastern Georgian Bay.  相似文献   
7.
8.
Repair of tissue after injury depends on the synthesis of a fibrous extracellular matrix to replace lost or damaged tissue. Newly deposited extracellular matrix is then re-modeled over time to emulate normal tissue. The extracellular matrix directs repair by regulating the behavior of the wide variety of cell types that are mobilized to the damaged area in order to rebuild the tissue. Acute inflammation, re-epithelialization, and contraction all depend on cell-extracellular matrix interactions and contribute to minimize infection and promote rapid wound closure. Matricellular proteins are up-regulated during wound healing where they modulate interactions between cells and the extracellular matrix to exert control over events that are essential for efficient tissue repair. Here, we discuss how the extracellular matrix changes during the stages of tissue repair, how matricellular proteins affect cell-extracellular matrix interactions, and how these proteins might be exploited for use therapeutically.  相似文献   
9.
This commentary highlights the effectiveness of optoelectronic properties of polymer semiconductors based on recent results emerging from our laboratory, where these materials are explored as artificial receptors for interfacing with the visual systems. Organic semiconductors based polymer layers in contact with physiological media exhibit interesting photophysical features, which mimic certain natural photoreceptors, including those in the retina. The availability of such optoelectronic materials opens up a gateway to utilize these structures as neuronal interfaces for stimulating retinal ganglion cells. In a recently reported work entitled “A polymer optoelectronic interface provides visual cues to a blind retina,” we utilized a specific configuration of a polymer semiconductor device structure to elicit neuronal activity in a blind retina upon photoexcitation. The elicited neuronal signals were found to have several features that followed the optoelectronic response of the polymer film. More importantly, the polymer-induced retinal response resembled the natural response of the retina to photoexcitation. These observations open up a promising material alternative for artificial retina applications.  相似文献   
10.

Background

Influenza pandemic remains a serious threat to human health. Viruses of avian origin, H5N1, H7N7 and H9N2, have repeatedly crossed the species barrier to infect humans. Recently, a novel strain originated from swine has evolved to a pandemic. This study aims at improving our understanding on the pathogenic mechanism of influenza viruses, in particular the role of non-structural (NS1) protein in inducing pro-inflammatory and apoptotic responses.

Methods

Human lung epithelial cells (NCI-H292) was used as an in-vitro model to study cytokine/chemokine production and apoptosis induced by transfection of NS1 mRNA encoded by seven infleunza subtypes (seasonal and pandemic H1, H2, H3, H5, H7, and H9), respectively.

Results

The results showed that CXCL-10/IP10 was most prominently induced (> 1000 folds) and IL-6 was slightly induced (< 10 folds) by all subtypes. A subtype-dependent pattern was observed for CCL-2/MCP-1, CCL3/MIP-1α, CCL-5/RANTES and CXCL-9/MIG; where induction by H5N1 was much higher than all other subtypes examined. All subtypes induced a similar temporal profile of apoptosis following transfection. The level of apoptosis induced by H5N1 was remarkably higher than all others. The cytokine/chemokine and apoptosis inducing ability of the 2009 pandemic H1N1 was similar to previous seasonal strains.

Conclusions

In conclusion, the NS1 protein encoded by H5N1 carries a remarkably different property as compared to other avian and human subtypes, and is one of the keys to its high pathogenicity. NCI-H292 cells system proves to be a good in-vitro model to delineate the property of NS1 proteins.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号