首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   12篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   5篇
  2013年   5篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   8篇
  1998年   5篇
  1997年   6篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1977年   3篇
  1972年   1篇
  1940年   1篇
  1909年   1篇
  1897年   1篇
  1889年   1篇
  1888年   4篇
  1875年   1篇
排序方式: 共有129条查询结果,搜索用时 31 毫秒
1.
A low pH method of liposome-membrane fusion (Schneider et al., 1980, Proc. Natl. Acad. Sci. U. S. A. 77:442) was used to enrich the mitochondrial inner membrane lipid bilayer 30-700% with exogenous phospholipid and cholesterol. By varying the phospholipid-to- cholesterol ratio of the liposomes it was possible to incorporate specific amounts of cholesterol (up to 44 mol %) into the inner membrane bilayer in a controlled fashion. The membrane surface area increased proportionally to the increase in total membrane bilayer lipid. Inner membrane enriched with phospholipid only, or with phospholipid plus cholesterol up to 20 mol %, showed randomly distributed intramembrane particles (integral proteins) in the membrane plane, and the average distance between intramembrane particles increased proportionally to the amount of newly incorporated lipid. Membranes containing between 20 and 27 mol % cholesterol exhibited small clusters of intramembrane particles while cholesterol contents above 27 mol % resulted in larger aggregations of intramembrane particles. In phospholipid-enriched membranes with randomly dispersed intramembrane particles, electron transfer activities from NADH- and succinate-dehydrogenase to cytochrome c decreased proportionally to the increase in distance between the particles. In contrast, these electron- transfer activities increased with decreasing distances between intramembrane particles brought about by cholesterol incorporation. These results indicate that (a) catalytically interacting redox components in the mitochondrial inner membrane such as the dehydrogenase complexes, ubiquinone, and heme proteins are independent, laterally diffusible components; (b) the average distance between these redox components is effected by the available surface area of the membrane lipid bilayer; and (c) the distance over which redox components diffuse before collision and electron transfer mediates the rate of such transfer.  相似文献   
2.
Ivermectin was evaluated against natural and artificial pinworm (Syphacia) infections in mice. Ivermectin given in the diet for 6 days at 0.0005% was 99% effective against both immature and adult worms. A diet level of 0.0004% reduced immature and mature pinworm by 99 and 75%, respectively but 0.0001% was inactive. One oral dose of 2.0 mg/kg was 100 and 97% effective against gravid females and immature worms, respectively. A dose of 1.0 mg/kg was 96 and 66% effective against the same parasitic stages. A similar effect was observed against adult male worms where 94 and 86% were removed by one oral dose of ivermectin at 2.0 and 1.0 mg/kg, respectively.  相似文献   
3.
Compressed synangia referable to the medullosan pollen organ genus Aulacotheca Halle have been discovered in Early Pennsylvanian sediments from Rock Island County, Illinois, U.S.A. Specimens were recovered from localized shales containing floral elements suggesting an upland environment. Based on synangial size, morphology, sporangial number, and prepollen type, two distinct forms, A. collicola n.sp. and Aulacotheca sp., are recognized. Synangia of A. collicola are 11–17 × 2.5 – 4.0 mm and have four to six sporangia. Free sporangial tips are acutely pointed and dehiscence is through a longitudinal slit to the inside of the synangium. Prepollen averages 181 × 129 μm and has a monolete suture with median deflection. Sexine on proximal and distal surfaces shows narrow, closely spaced, anastomosing inpockets; distal and lateral walls are separated by a deep, encircling fold. Synangia of Aulacotheca sp. are 21–33 × 3.8 – 5.5 mm and have 4–6 sporangia. Distally, free sporangial tips have a narrow extension, giving a mucronate appearance. Features of these species suggest that greater morphological diversity in synangial and pollen structure occurs in Aulacotheca and the medullosan pteridosperms than previously recognized.  相似文献   
4.
In Chironomus tentans salivary gland cells, the cytoplasm can be dissected into concentric zones situated at increasing distances from the nuclear envelope. After RNA labeling, the newly made ribosomal subunits are found in the cytoplasm mainly in the neighborhood of the nucleus with a gradient of increasing abundance towards the periphery of the cell. The gradient for the small subunit lasts for a few hours and disappears entirely after treatment with puromycin. The large subunit also forms a gradient but one which is only partially abolished by puromycin. The residual gradient which which is resistant to the addition of the drug is probably due to the binding of some large ribosomal units to the membranes of the endoplasmic reticulum (J.-E. Edstrom and u. Lonn. 1976. J. Cell Biol. 70:562-572, and U. Lonn and J.-E. Edstrom. 1976. J. Cell. Biol. 70:573-580). If growth is inhibited by starvation, only the puromycin-sensitive type gradient is observed for the large subunit, suggesting that the attachment of these newly made subunits to the endoplasmic reticulum membranes will not occur. If, on the other hand, the drug-resistant gradient is allowed to form in feeding animals, it is conserved during a subsequent starvation for longer periods than in control feeding animals. This observation provides a further support for an effect of starvation on the normal turnover of the large subunits associated with the endoplasmic reticulum. These results also indicate a considerable structural stability in the cytoplasm of these cells worth little or no gross redistribution of cytoplasmic structures over a period of at least 6 days.  相似文献   
5.
6.
Intracellular aggregation of misfolded proteins is observed in a number of human diseases, in particular, neurologic disorders in which expanded tracts of polyglutamine residues play a central role. A variety of other proteins are prone to aggregation when mutated, indicating that this process is a common pathologic mechanism for inherited disorders. However, little is known about the relationship between the sequence of aggregating peptides and the specificity of intracellular accumulation. Here we demonstrate that substitution of two residues eliminates aggregation of a 111-amino acid peptide derived from the C-terminal portion of the cystic fibrosis transmembrane conductance regulator (CFTR). We also show that fusion to a reporter protein considerably alters the subcellular distribution of aggregating peptide. When fused to green fluorescent protein, the peptide containing amino acids 1370-1480 of CFTR accumulates in large perinuclear or nuclear aggregates. The same CFTR fragment devoid of green fluorescent protein localizes predominantly to discrete accumulations associated with mitochondria. Importantly, both types of accumulation are dependent on the presence of the same two amino acids within the CFTR sequence. Co-expression studies show that both CFTR-derived proteins can co-localize in large cytoplasmic/nuclear aggregates. However, neither CFTR construct accumulates in intracellular inclusions formed by N-terminal fragment of huntingtin. In addition to unique accumulation patterns, each aggregating peptide shows differences in association with chaperone proteins. Thus, our results indicate that the process of intracellular aggregation can be a selective process determined by the composition of the aggregating peptides.  相似文献   
7.
Polarization of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel to the apical plasma membrane in epithelial cells is critical for vectorial chloride transport. Previously, we reported that the C terminus of CFTR constitutes a PDZ-interacting domain that is required for CFTR polarization to the apical plasma membrane and interaction with the PDZ domain-containing protein EBP50 (NHERF). PDZ-interacting domains are typically composed of the C-terminal three to five amino acids, which in CFTR are QDTRL. Our goal was to identify the key amino acid(s) in the PDZ-interacting domain of CFTR with regard to its apical polarization, interaction with EBP50, and ability to mediate transepithelial chloride secretion. Point substitution of the C-terminal leucine (Leu at position 0) with alanine abrogated apical polarization of CFTR, interaction between CFTR and EBP50, efficient expression of CFTR in the apical membrane, and chloride secretion. Point substitution of the threonine (Thr at position -2) with alanine or valine had no effect on the apical polarization of CFTR, but reduced interaction between CFTR and EBP50, efficient expression of CFTR in the apical membrane as well as chloride secretion. By contrast, individual point substitution of the other C-terminal amino acids (Gln at position -4, Asp at position -3 and Arg at position -1) with alanine had no effect on measured parameters. We conclude that the PDZ-interacting domain, in particular the leucine (position 0) and threonine (position -2) residues, are required for the efficient, polarized expression of CFTR in the apical plasma membrane, interaction of CFTR with EBP50, and for the ability of CFTR to mediate chloride secretion. Mutations that delete the C terminus of CFTR may cause cystic fibrosis because CFTR is not polarized, complexed with EBP50, or efficiently expressed in the apical membrane of epithelial cells.  相似文献   
8.

Background  

Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years.  相似文献   
9.

Background

In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2).

Results

Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint-mutant cells.

Conclusion

The fact that ~97% of fission yeast replication origins – both early and late – are not significantly affected by replication checkpoint mutations in HU-treated cells suggests that (i) most late-firing origins are restrained from firing in HU-treated cells by at least one checkpoint-independent mechanism, and (ii) checkpoint-dependent slowing of S phase in fission yeast when DNA is damaged may be accomplished primarily by the slowing of replication forks.  相似文献   
10.

Background

Due to the limited number of experimental studies that mechanically characterise human atherosclerotic plaque tissue from the femoral arteries, a recent trend has emerged in current literature whereby one set of material data based on aortic plaque tissue is employed to numerically represent diseased femoral artery tissue. This study aims to generate novel vessel-appropriate material models for femoral plaque tissue and assess the influence of using material models based on experimental data generated from aortic plaque testing to represent diseased femoral arterial tissue.

Methods

Novel material models based on experimental data generated from testing of atherosclerotic femoral artery tissue are developed and a computational analysis of the revascularisation of a quarter model idealised diseased femoral artery from a 90% diameter stenosis to a 10% diameter stenosis is performed using these novel material models. The simulation is also performed using material models based on experimental data obtained from aortic plaque testing in order to examine the effect of employing vessel appropriate material models versus those currently employed in literature to represent femoral plaque tissue.

Results

Simulations that employ material models based on atherosclerotic aortic tissue exhibit much higher maximum principal stresses within the plaque than simulations that employ material models based on atherosclerotic femoral tissue. Specifically, employing a material model based on calcified aortic tissue, instead of one based on heavily calcified femoral tissue, to represent diseased femoral arterial vessels results in a 487 fold increase in maximum principal stress within the plaque at a depth of 0.8 mm from the lumen.

Conclusions

Large differences are induced on numerical results as a consequence of employing material models based on aortic plaque, in place of material models based on femoral plaque, to represent a diseased femoral vessel. Due to these large discrepancies, future studies should seek to employ vessel-appropriate material models to simulate the response of diseased femoral tissue in order to obtain the most accurate numerical results.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号