首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   43篇
  2022年   5篇
  2021年   11篇
  2020年   6篇
  2019年   9篇
  2018年   6篇
  2017年   6篇
  2016年   13篇
  2015年   16篇
  2014年   21篇
  2013年   28篇
  2012年   40篇
  2011年   30篇
  2010年   21篇
  2009年   17篇
  2008年   18篇
  2007年   11篇
  2006年   9篇
  2005年   14篇
  2004年   10篇
  2003年   7篇
  2002年   9篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   9篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   8篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
  1979年   3篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1971年   5篇
  1969年   1篇
  1968年   1篇
排序方式: 共有413条查询结果,搜索用时 187 毫秒
1.
Using deuterium-labeled glycerol as tracer and gas-liquid chromatography-mass spectrometry techniques for the determination of isotopic enrichment, we have developed a simple and ethically acceptable method of determining glycerol appearance rate in humans under steady-state and nonsteady-state conditions. In normal subjects, the appearance rate of glycerol in the post-absorptive state was 2.22 +/- 0.20 mumol X kg-1 X min-1, a value in agreement with those reported in studies with radioactively labeled tracers. The ratio nonesterified fatty acid (NEFA) appearance rate/glycerol appearance rate ranged from 1.95 to 3.40. In insulin-dependent diabetic patients with a mild degree of metabolic control, the appearance rate of glycerol was 2.48 +/- 0.29 mumol X kg-1 X min-1. The volume of distribution of glycerol, determined by the bolus injection technique, was (mean) 0.306 l X kg-1 in normal subjects and 0.308 l X kg-1 in insulin-independent diabetic patients. To evaluate the usefulness of the method for determination of glycerol kinetics in nonsteady-state conditions, we infused six normal subjects with natural glycerol and calculated the isotopically determined glycerol appearance rate using a single compartment model (volume of distribution 0.31 l X kg-1). During these tests, the expected glycerol appearance rates were successively 5.03 +/- 0.33, 7.48 +/- 0.39, 9.94 +/- 0.34, 7.48 +/- 0.39, and 5.03 +/- 0.33 mumol +/- kg-1 X min-1, whereas the corresponding isotopically determined appearance rates were 4.62 +/- 0.45, 6.95 +/- 0.56, 10.85 +/- 0.51, 7.35 +/- 0.34, and 5.28 +/- 0.12 mumol X kg-1 X min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
It has recently been suggested that topoisomerases could be important targets for drugs used in several diseases. This prompted us to purify and characterize the topoisomerases I and II present in the erythrocytes of protozoan parasites of the genus Plasmodium, the causative agent of malaria, in order to later use these enzymatic systems in antimalarial drug assays. The topoisomerases were purified from Plasmodium berghei, a parasite of mouse red cells. The Plasmodium topoisomerase II consists of two subunits with a molecular weight of about 160K. The enzyme is ATP- and Mg2+-dependent. The conditions for the reactions of relaxation, unknotting, decatenation, and catenation were found to be similar to those observed with enzymes from other eukaryotic cells. The Plasmodium topoisomerase I is a monomeric enzyme with a Mr of 70K-100K. It is ATP-independent and K+- or Na-dependent. Mg2+ is not required for relaxation but stimulates the reaction. Topoisomerase II was more sensitive to drug action than topoisomerase I. The most active drugs were the ellipticine derivatives. The antimalarial drugs, currently used in human clinical therapy, were poor inhibitors. Some antitumoral drugs stimulated the double-stranded DNA cleavage activity of Plasmodium topoisomerase II, like that of mammalian topoisomerases II. Antimalarial drugs had no stimulating activity. It is therefore suggested that Plasmodium topoisomerases are not good targets for antimalarial drugs.  相似文献   
3.
4.
The range of polysaccharide-degrading enzymes and glycosidases formed by the phytopathogenic fungus Sclerotinia sclerotiorum was monitored following growth on 16 carbohydrate substrates. Endo- and exoenzymes capable of degrading cellulosic, hemicellulosic, and pectinolytic polysaccharides were secreted. Pectinolytic activities were produced constitutively on all of the substrates tested. Cellulolytic enzymes were not induced in simple sugar (i.e., glucose or xylose) media. Polysaccharide growth substrates and cellulase inducers increased all of the enzyme activities tested. Gel filtration analysis revealed the appearance of new molecular forms of pectinase, β-xylosidase, and cellobiosidase during induction on pectin and carboxymethyl cellulose media.  相似文献   
5.
We have used amphibian gastrulation as a model system to study the action of the extracellular matrix (ECM) glycoprotein tenascin on mesodermal cell migration. Tenascin function was assayed in vitro during spreading of isolated cells from the dorsal marginal zone (DMZ) and during cell migration from DMZ explants. Plastic coated with bovine fibronectin or gastrula ECM was used as a substratum. In both cases, tenascin added to the medium inhibited spreading and migration of mesodermal cells. In addition, a substratum coated with a mixture of fibronectin and tenascin was found to prevent mesodermal cell migration. Tenascin was also microinjected into the blastocoel cavity of living embryos at the late blastula stage. This led to a complete arrest of gastrulation in more than 80% of the cases. Scanning electron microscopy of fractures from arrested gastrulae showed that mesodermal cell migration was blocked. Similar injection experiments carried out at the middle gastrula stage demonstrated that tenascin is able to inhibit cell migration after cells have already contacted the ECM. Mesodermal cell migration in the presence of tenascin could be restored in vitro and in vivo by the monoclonal antibody mAb Tn68 which is known to mask a cell binding site of the molecule. Finally, tenascin microinjected into the blastocoel of blastula or gastrula stage embryos bound within 15 min to the ECM fibrils at all the stages studied. Our results show that exogenous tenascin can be incorporated into embryonic ECM and interferes in vivo with the interactions of cells with a fibronectin-rich matrix.  相似文献   
6.
The cleavage of the kDNA minicircles of Trypanosoma equiperdum by the restriction endonucleases Hinf I, Bgl II, Mbo I, Tag I and Mbo II revealed that this kDNA is homogeneous in base sequence. This is in contrast with the kDNA of minicircles of the other species of trypanosomes so far studied. The 10 cleavage sites, obtained with these endonucleases, were ordered and a restriction cleavage map of the minicircles was thus drawn.  相似文献   
7.
Tenascin is a large oligomeric extracellular matrix (ECM) glycoprotein whose expression is highly restricted during vertebrate development. It has a characteristic hexameric quaternary structure with six arms linked to a central globular domain. Each arm contains a single polypeptide with the central globular domain formed by the covalent association of the N-terminal ends of the six polypeptides. Tenascin first appears during development, associated with the neural crest cell migration pathways of mammalian, avian and amphibian embryos. During later development, it is observed at sites of cartilage, bone and tendon formation. Tenascin expression also occurs in defined areas in the developing nervous system and in condensing mesenchyme, in response to epithelio-mesenchymal interactions. The function of tenascin in these different morphogenetic processes is not yet clearly understood. Tenascin can promote neurite outgrowth in vitro and can inhibit cell interactions with fibronectin. Results based on antibody mapping and molecular cloning indicate that these properties involve two distinct cell binding sites. Together with its highly regulated expression in the embryo, these properties suggest that tenascin plays a key role in the control of cell migration and differentiation during development.  相似文献   
8.
9.
The main targets of hepatitis C virus (HCV) are hepatocytes, the highly polarized cells of the liver, and all the steps of its life cycle are tightly dependent on host lipid metabolism. The interplay between polarity and lipid metabolism in HCV infection has been poorly investigated. Signaling lipids, such as phosphoinositides (PIs), play a vital role in polarity, which depends on the distribution and expression of PI kinases and PI phosphatases. In this study, we report that HCV core protein, expressed in Huh7 and Madin–Darby canine kidney (MDCK) cells, disrupts apicobasal polarity. This is associated with decreased expression of the polarity protein Dlg1 and the PI phosphatase SHIP2, which converts phosphatidylinositol 3,4,5-trisphosphate into phosphatidylinositol 4,5-bisphosphate (PtdIns(3,4)P2). SHIP2 is mainly localized at the basolateral membrane of polarized MDCK cells. In addition, PtdIns(3,4)P2 is able to bind to Dlg1. SHIP2 small interfering RNA or its catalytically dead mutant disrupts apicobasal polarity, similar to HCV core. In core-expressing cells, RhoA activity is inhibited, whereas Rac1 is activated. Of interest, SHIP2 expression rescues polarity, RhoA activation, and restricted core level in MDCK cells. We conclude that SHIP2 is an important regulator of polarity, which is subverted by HCV in epithelial cells. It is suggested that SHIP2 could be a promising target for anti-HCV treatment.  相似文献   
10.
We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear (‘Old Home’בLouise Bon Jersey’) and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号