首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   35篇
  国内免费   2篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   6篇
  2016年   8篇
  2015年   11篇
  2014年   24篇
  2013年   48篇
  2012年   29篇
  2011年   26篇
  2010年   15篇
  2009年   10篇
  2008年   26篇
  2007年   41篇
  2006年   36篇
  2005年   25篇
  2004年   37篇
  2003年   22篇
  2002年   32篇
  2001年   10篇
  2000年   19篇
  1999年   15篇
  1998年   14篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   14篇
  1991年   7篇
  1990年   13篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1978年   6篇
  1977年   6篇
  1975年   6篇
  1974年   4篇
  1971年   2篇
  1969年   2篇
排序方式: 共有640条查询结果,搜索用时 62 毫秒
1.
A human-mouse hybrid segregant HM76Dd40-6 with new characteristics was derived from the hybrid cell line HM76Dd containing human chromosome 19 as the only human chromosome. Three virus sensitivities located on human chromosome 19 (PVS, E11S and RDRC) were lost in HM76Dd40-6, while six other genes (C3, LDLR, EF2, GPI, PEPD and MANB) were retained. Cytogenetic analysis and in situ hybridization using human or mouse repeated sequences as probes showed that the region q13.1-qter of human chromosome 19 had been replaced by a fragment of mouse chromosome. Our results permit further regional assignment for the following five genes on human chromosome 19: GPI in the region cen-q12, MANB in p13.2-q12, E11S and RDRC in q13.1-qter, and EF2 in pter-q12.  相似文献   
2.
Summary Glucose is actively absorbed via a Na+-dependent active glucose transporter (Na-GT) in the small intestine. We raised a polyclonal antibody against the peptide corresponding to amino acids 564–575 of rabbit intestinal Na-GT, and localized it immunohistochemically in the rat jejunum. By means of immunofluorescence staining, Na-GT was located at the brush border of the absorptive epithelial cells of the intestinal villi. Electron-microscopic examination showed that Na-GT was localized at the plasma membrane of the apical microvilli of these cells. Little Na-GT was found at the basolateral plasma membrane. Along the crypt-villus axis, all of the absorptive epithelial cells in the villus were positive for Na-GT. In addition to the brush border staining, the supranuclear positive staining, which was shown to be the Golgi apparatus by use of electron microscopy, was seen in cells located between the base to the middle of the villus. Cells in crypts exhibited little or no staining for Na-GT. Goblet cells scattered in the intestinal epithelium were negative for Na-GT staining. These observations show that Na-GT is specific to the apical plasma membrane of the absorptive epithelial cells, and that the onset of Na-GT synthesis may occur near the crypt-villus junction.  相似文献   
3.
Summary Genetic heterogeneity in peroxisome-deficient disorders, including Zellweger's cerebrohepatorenal syndrome, neonatal adrenoleukodystrophy and infantile Refsum disease, was investigated. Fibroblasts from 17 patients were fused using polyethylene glycol, cultivated on cover slips, and the formation of peroxisomes in the fused cells was visualized by immunofluorescence staining, using anti-human catalase IgG. Two distinct staining patterns were observed: (1) peroxisomes appeared in the majority of multinucleated cells, and (2) practically no peroxisomes were identified. Single step 12-(1-pyrene) dodecanoic acid/ultraviolet (P12/UV)-selection confirmed that the former groups were resistant to this selection, most of the surviving cells contained abundant peroxisomes, and the latter cells died. In the complementary matching, [1-14C]lignoceric acid oxidation and the biosynthesis of peroxisomal proteins were also normalized. Five complementation groups were identified. Group A: Zellweger syndrome and infantile Refsum disease; Groups B, C and D: Zellweger syndrome; Group E: Zellweger syndrome, neonatal adrenoleukodystrophy and infantile Refsum disease. We compared these groupings with those of Roscher and identified eight complementation groups. There was no obvious relation between complementation groups and clinical phenotypes. These results indicate that the transport, intracellular processing and function of peroxisomal proteins were normalized in the complementary matching and that at least eight different genes are involved in the formation of normal peroxisomes and in the transport of peroxisomal enzymes.  相似文献   
4.
Rat hepatocytes were cultured for 72 h with or without the addition of 0.5 mM clofibric acid. The activities of individual enzymes of the peroxisomal beta-oxidation pathway (acyl-CoA oxidase, enoyl-CoA hydratase-3-hydroxyacyl-CoA dehydrogenase bifunctional protein, and 3-ketoacyl-CoA thiolase) decreased in the control culture, but markedly increased synchronously in the clofibric acid-treated culture. The levels of mRNAs coding for these enzymes and the rates of synthesis of the enzymes were also elevated in the clofibric acid-treated culture, although no proportional relationship was observed between the time-dependent changes of these parameters. The increase in mRNAs was much higher than the increase in the rate of synthesis of the enzymes. The activity of catalase, its mRNA level and the rate of its synthesis were slightly affected. The effects of clofibric acid on the peroxisomal beta-oxidation enzymes and catalase in primary cultured hepatocytes were very similar to those observed in vivo. These results, therefore, suggest that primary culture of hepatocytes should provide a useful means for investigating the mechanism of induction of peroxisomal enzymes and the mechanism of action of peroxisome proliferators.  相似文献   
5.
For the studies on the mechanism of induction of peroxisomal beta-oxidation enzymes and biogenesis of the organelle, we have isolated cDNA clones for rat peroxisomal enoyl-CoA: hydratase-3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme. On blotting experiments with liver RNA, the cDNAs hybridized to a 3.0-kilobase RNA which was increased 5-7-fold by the administration of di-(2-ethylhexyl)phthalate to rats. Nucleotide sequencing was carried out for four cloned cDNAs and one obtained by a primer extension method. By overlapping these sequences with each other, we identified 20 nucleotides of 5'-noncoding, 2,166 nucleotides of coding, and 910 nucleotides of 3'-noncoding regions. The deduced amino acid sequence of the enzyme is composed of 722 residues, and the composition agrees with that of the protein data. The sequence was confirmed by the amino acid compositions and sequence analyses of some of the tryptic peptides. The molecular weight of the mature enzyme is calculated to be 78,511 from the predicted amino acid sequence. The enzyme has no terminal peptide extension as a signal for translocation into peroxisomes.  相似文献   
6.
Molecular cloning of cDNA for rat acyl-CoA oxidase   总被引:9,自引:0,他引:9  
Poly(A+) RNA was prepared from hepatic free polysomes of rats which had been fed di(2-ethylhexyl) phthalate for the induction of peroxisomal beta-oxidation enzymes. This preparation was enriched for the mRNAs of these enzymes by sucrose density gradient centrifugation, and used for the synthesis of double-stranded cDNA. Recombinant plasmids were constructed from the cDNA and pBR322 by dG X dC-tailing method and used for the transformation of an Escherichia coli strain, chi 1776. By differential colony hybridization using [32P]cDNA of partially purified liver poly(A+) RNA from induced and noninduced rats as probes, and then by hybridization-selected translation, we obtained two clones with cDNA inserts which specifically selected acyl-CoA oxidase mRNA. On Northern blotting, both cDNA inserts hybridized to 3.8-kilobase RNA which was increased about 10-fold by di(2-ethylhexyl) phthalate treatment of the rats. The cleavage maps of the cDNA inserts showed they overlap with each other. We conclude that the above two recombinant plasmid clones contain cDNA sequences for rat acyl-CoA oxidase.  相似文献   
7.
Molecular cloning of cDNA for rat liver catalase   总被引:4,自引:0,他引:4  
For the studies on the induction of peroxisomal enzymes by hypolipidemic agents, we have tried to isolate a cDNA clone for rat liver catalase. A recombinant clone, pMJ501, was isolated, of which cDNA insert specifically hybridized to catalase mRNA in hybridization-selected translation. On RNA blot hybridization, it hybridized to 2.4-kilobases RNA which was increased about 1.5-fold by the administration of di-(2-ethylhexyl)phthalate to the rats. The nucleotide sequence of the cDNA contains a reading frame for 109 amino acid residues which match the reported amino acid sequence of bovine liver catalase at the carboxyl end with 82% homology. It is concluded that pMJ501 contains a cDNA sequence for rat liver catalase.  相似文献   
8.
The activities of carnitine octanoyltransferase (COT) and carnitine palmitoyltransferase (CPT) in rat liver were markedly increased by administration of di(2-ethyl-hexyl)phthalate. COT and CPT were purified from the enzyme-induced rat liver. COT was a 66,000-dalton polypeptide. The molecular weight of native CPT was 280,000--320,000 daltons, and the enzyme consisted of 69,200-dalton polypeptides. CAT, COT, and CPT were immunologically different. COT exhibited activity with all of the substrates tested (acyl-CoA's and acylcarnitines of saturated fatty acids having carbon chain lengths of C2--C20), though maximum activity was observed with hexanoyl derivatives. CPT exhibited catalytic activity with medium- and long-chain acyl derivatives. 2-Bromo-palmitoyl-CoA inactivated COT but not CPT. Malonyl-CoA inhibited CPT but not COT. CPT was confined to mitochondria, whereas COT was found in peroxisomes and the soluble compartment but not in mitochondria.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号