首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29146篇
  免费   2592篇
  国内免费   2298篇
  2024年   41篇
  2023年   220篇
  2022年   504篇
  2021年   906篇
  2020年   686篇
  2019年   805篇
  2018年   843篇
  2017年   709篇
  2016年   1016篇
  2015年   1712篇
  2014年   1934篇
  2013年   2072篇
  2012年   2693篇
  2011年   2383篇
  2010年   1608篇
  2009年   1454篇
  2008年   1899篇
  2007年   1745篇
  2006年   1624篇
  2005年   1491篇
  2004年   1369篇
  2003年   1292篇
  2002年   1082篇
  2001年   603篇
  2000年   496篇
  1999年   496篇
  1998年   342篇
  1997年   256篇
  1996年   234篇
  1995年   205篇
  1994年   172篇
  1993年   141篇
  1992年   160篇
  1991年   122篇
  1990年   108篇
  1989年   96篇
  1988年   68篇
  1987年   79篇
  1986年   57篇
  1985年   38篇
  1984年   26篇
  1983年   37篇
  1982年   19篇
  1981年   23篇
  1980年   16篇
  1979年   19篇
  1978年   18篇
  1977年   18篇
  1975年   12篇
  1972年   12篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
2.
3.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   
4.
The Indochinese silvered langur (Trachypithecus germaini) is distributed to the west of Mekong River in Cambodia, Lao PDR, Thailand and Vietnam. During a two‐year study, from May 2014 to May 2016, we collected 320.44 hr of behavior, with 17,040 feeding bouts recorded (142 hr) for T. germaini on Chua Hang Karst Mountain, Kien Luong District, Kien Giang Province, Vietnam. Feeding accounted for 45% of the Indochinese silvered langurs’ activity budget. The plant diet of the Indochinese silvered langurs was principally composed of young leaves (58%), followed by mature leaves (9.5%), fruits (22.7%), flowers (4.7%), buds (3.3%), petioles (1.2%), and other (0.5%). A total of 58 plant species were fed on by the silvered langurs, and leaves of eight species (Phyllathus reticulatus, Ficus rumphii, Ficus tinctoria, Ficus microcarpa, Cayratia trifolia, Streblus ilicifolia, Combretum latifolium, and Streblus asper) were fed on throughout the year. P. reticulatus was most frequently eaten (13.9% feeding time, n = 1,733). Food selection differed significantly between months and seasons. The Indochinese silvered langurs ate 27 plant species in the wet season compared with 23 plant species in the dry season. Leaf chemical composition of two food categories, 16 eaten species (with 10 most frequently consumed species and six least consumed species), and four noneaten species, were analyzed. Feeding samples from eaten species in the Indochinese silvered langurs's diet contained lower amounts of condensed tannin, lignin, protein, ash, and lipids, but a higher amount of total sugar compared with samples from noneaten species. Furthermore, the most frequently consumed species contained lower amounts of lignin compared with the less frequently consumed species. Using a generalized linear model with five variables, including neutral detergent fiber (NDF), total sugar, lignin, lipid, and calcium (Ca) indicated that NDF positively correlated and lignin content negatively correlated with feeding records in the diet of these langur.  相似文献   
5.
We tried to establish compatible carbon content models of individual trees for a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation from Fujian province in southeast China. In general, compatibility requires that the sum of components equal the whole tree, meaning that the sum of percentages calculated from component equations should equal 100%. Thus, we used multiple approaches to simulate carbon content in boles, branches, foliage leaves, roots and the whole individual trees. The approaches included (i) single optimal fitting (SOF), (ii) nonlinear adjustment in proportion (NAP) and (iii) nonlinear seemingly unrelated regression (NSUR). These approaches were used in combination with variables relating diameter at breast height (D) and tree height (H), such as D, D2H, DH and D&H (where D&H means two separate variables in bivariate model). Power, exponential and polynomial functions were tested as well as a new general function model was proposed by this study. Weighted least squares regression models were employed to eliminate heteroscedasticity. Model performances were evaluated by using mean residuals, residual variance, mean square error and the determination coefficient. The results indicated that models with two dimensional variables (DH, D2H and D&H) were always superior to those with a single variable (D). The D&H variable combination was found to be the most useful predictor. Of all the approaches, SOF could establish a single optimal model separately, but there were deviations in estimating results due to existing incompatibilities, while NAP and NSUR could ensure predictions compatibility. Simultaneously, we found that the new general model had better accuracy than others. In conclusion, we recommend that the new general model be used to estimate carbon content for Chinese fir and considered for other vegetation types as well.  相似文献   
6.
We have tested the hypothesis that reseeding is a plesiomorphic character state and that sprouting is a derived state inAspalathus linearis, and that the latter is an adaptation to ensure fire-survival in a fireprone environment. Samples of five seeder and four sprouter populations of A.linearis were examined by horizontal starch gel electrophoresis to assess the amount of genetic differentiation within and between sprouting and seeding populations, and to determine the extent of gene flow between the populations. Leaf extracts were surveyed for ten enzymes and gene products revealed genetic variation at 13 (76%) of 17 protein coding loci. Allele frequency differences were found between sprouting and seeding populations and genetic distance values show that the sprouters are grouped separate from the seeders, thus providing support for the morphological data on which the above mentioned hypothesis is based. It is evident that evolution operates at the population level inA. linearis.  相似文献   
7.
8.
9.
The use of miniaturized video cameras to study the at‐sea behavior of flying seabirds has increased in recent years. These cameras allow researchers to record several behaviors that were not previously possible to observe. However, video recorders produce large amounts of data and videos can often be time‐consuming to analyze. We present a new technique using open‐source software to extract bank angles from bird‐borne video footage. Bank angle is a key facet of dynamic soaring, which allows albatrosses and petrels to efficiently search vast areas of ocean for food. Miniaturized video cameras were deployed on 28 Wandering Albatrosses (Diomedea exulans) on Marion Island (one of the two Prince Edward Islands) from 2016 to 2018. The OpenCV library for the Python programming language was used to extract the angle of the horizon relative to the bird’s body (= bank angle) from footage when the birds were flying using a series of steps focused on edge detection. The extracted angles were not significantly different from angles measured manually by three independent observers, thus being a valid method to measure bank angles. Image quality, high wind speeds, and sunlight all influenced the accuracy of angle estimates, but post‐processing eliminated most of these errors. Birds flew most often with cross‐winds (58%) and tailwinds (39%), resulting in skewed distributions of bank angles when birds turned into the wind more often. Higher wind speeds resulted in extreme bank angles (maximum observed was 94°). We present a novel method for measuring postural data from seabirds that can be used to describe the fine‐scale movements of the dynamic‐soaring cycle. Birds appeared to alter their bank angle in response to varying wind conditions to counter wind drift associated with the prevailing westerly winds in the Southern Ocean. These data, in combination with fine‐scale positional data, may lead to new insights into dynamic‐soaring flight.  相似文献   
10.
Relationships between induced high leaf intercellular CO2 concentrations, leaf K+ and NO3 ? ion movement and early fruit formation under macronutrient limitation are not well understood. We examined the effects and interactions of reduced K/N input treatments on leaf intercellular CO2, photosynthesis rate, carboxylation and water use efficiency, berry formation as well as leaf/fruit K+, NO3 ? and photosynthate retention of strawberry (Fragaria × ananassa Duch.) to enhance low-input agriculture. The field study was conducted in Nova Scotia, eastern Canada during 2009–2010. The experimental treatments consisted of five K2O rates (0, 6, 12, 18, and 24 kg ha?1) and five N rates (0, 5, 10, 15, and 20 kg ha?1), representing respectively, 0, 25, 50, 75, and 100 % of regular macronutrient recommendations based on the soil testing. The treatments were arranged in a split-plot design with three blocks in the field. The cultivar was ‘Mira’, a June-bearing crop. The results showed that strawberry plants treated with 25 %-reduced inputs could induce significantly higher leaf intercellular CO2 concentrations to improve plant photosynthesis, carboxylation and water use efficiency and translocation of leaf/fruit K+ and dissolved solids, which could advance berry formation by 6 days and produce significantly higher marketable yields (P < 0.05). Higher leaf intercellular CO2 inhibited leaf/fruit NO3 ? ion retention, but this inhibition did not occur in leaf/fruit K+ retention. Linear interactions of the K/N treatments were significant on fruit marketable yields, intercellular CO2, net photosynthesis, leaf transpiration rates, and leaf temperatures (P < 0.05). It was concluded that higher leaf CO2 could enhance plant photosynthesis, promote plant carboxylation and water use efficiency, and advance berry formation, but it could inhibit leaf NO3 ? retention. This inhibition did not find in leaf K+ ion and dissolved solid retention. Overlay co-limitation of leaf intercellular CO2 and translocation of leaf/fruit K+/NO3 ? and total dissolved solids could constrain more fruit formation attributes under full macronutrient supply than reduced inputs. It was suggested that low input would be an optimal and sustainable option for improving small fruit crop physiological development and dealing with macronutrient deficiency challenge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号