首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9251篇
  免费   836篇
  国内免费   2篇
  2024年   15篇
  2023年   76篇
  2022年   205篇
  2021年   358篇
  2020年   154篇
  2019年   197篇
  2018年   234篇
  2017年   195篇
  2016年   345篇
  2015年   628篇
  2014年   635篇
  2013年   633篇
  2012年   861篇
  2011年   798篇
  2010年   456篇
  2009年   399篇
  2008年   598篇
  2007年   537篇
  2006年   492篇
  2005年   440篇
  2004年   385篇
  2003年   395篇
  2002年   343篇
  2001年   63篇
  2000年   44篇
  1999年   75篇
  1998年   76篇
  1997年   51篇
  1996年   46篇
  1995年   40篇
  1994年   34篇
  1993年   37篇
  1992年   27篇
  1991年   18篇
  1990年   20篇
  1989年   11篇
  1988年   15篇
  1987年   11篇
  1986年   8篇
  1985年   14篇
  1984年   9篇
  1983年   5篇
  1981年   8篇
  1980年   10篇
  1978年   6篇
  1977年   9篇
  1975年   5篇
  1974年   7篇
  1971年   4篇
  1955年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Heat stress reduces maize yield and several lines of evidence suggest that the heat lability of maize endosperm ADP-glucose pyrophosphorylase (AGPase) contributes to this yield loss. AGPase catalyzes a rate-limiting step in starch synthesis. Herein, we present a novel maize endosperm AGPase small subunit variant, termed BT2-TI that harbors a single amino acid change of residue 462 from threonine to isoleucine. The mutant was isolated by random mutagenesis and heterologous expression in a bacterial system. BT2-TI exhibits enhanced heat stability compared to wildtype maize endosperm AGPase.The TI mutation was placed into another heat-stable small subunit variant, MP. MP is composed of sequences from the maize endosperm and the potato tuber small subunit. The MP-TI small subunit variant exhibited greater heat stability than did MP. Characterization of heat stability as well as kinetic and allosteric properties suggests that MP-TI may lead to increased starch yield when expressed in monocot endosperms.  相似文献   
5.
  1. Animal behavior is elicited, in part, in response to external conditions, but understanding how animals perceive the environment and make the decisions that bring about these behavioral responses is challenging.
  2. Animal heads often move during specific behaviors and, additionally, typically have sensory systems (notably vision, smell, and hearing) sampling in defined arcs (normally to the front of their heads). As such, head‐mounted electronic sensors consisting of accelerometers and magnetometers, which can be used to determine the movement and directionality of animal heads (where head “movement” is defined here as changes in heading [azimuth] and/or pitch [elevation angle]), can potentially provide information both on behaviors in general and also clarify which parts of the environment the animals might be prioritizing (“environmental framing”).
  3. We propose a new approach to visualize the data of such head‐mounted tags that combines the instantaneous outputs of head heading and pitch in a single intuitive spherical plot. This sphere has magnetic heading denoted by “longitude” position and head pitch by “latitude” on this “orientation sphere” (O‐sphere).
  4. We construct the O‐sphere for the head rotations of a number of vertebrates with contrasting body shape and ecology (oryx, sheep, tortoises, and turtles), illustrating various behaviors, including foraging, walking, and environmental scanning. We also propose correcting head orientations for body orientations to highlight specific heading‐independent head rotation, and propose the derivation of O‐sphere‐metrics, such as angular speed across the sphere. This should help identify the functions of various head behaviors.
  5. Visualizations of the O‐sphere provide an intuitive representation of animal behavior manifest via head orientation and rotation. This has ramifications for quantifying and understanding behaviors ranging from navigation through vigilance to feeding and, when used in tandem with body movement, should provide an important link between perception of the environment and response to it in free‐ranging animals.
  相似文献   
6.
We have tested the hypothesis that reseeding is a plesiomorphic character state and that sprouting is a derived state inAspalathus linearis, and that the latter is an adaptation to ensure fire-survival in a fireprone environment. Samples of five seeder and four sprouter populations of A.linearis were examined by horizontal starch gel electrophoresis to assess the amount of genetic differentiation within and between sprouting and seeding populations, and to determine the extent of gene flow between the populations. Leaf extracts were surveyed for ten enzymes and gene products revealed genetic variation at 13 (76%) of 17 protein coding loci. Allele frequency differences were found between sprouting and seeding populations and genetic distance values show that the sprouters are grouped separate from the seeders, thus providing support for the morphological data on which the above mentioned hypothesis is based. It is evident that evolution operates at the population level inA. linearis.  相似文献   
7.
8.
The use of miniaturized video cameras to study the at‐sea behavior of flying seabirds has increased in recent years. These cameras allow researchers to record several behaviors that were not previously possible to observe. However, video recorders produce large amounts of data and videos can often be time‐consuming to analyze. We present a new technique using open‐source software to extract bank angles from bird‐borne video footage. Bank angle is a key facet of dynamic soaring, which allows albatrosses and petrels to efficiently search vast areas of ocean for food. Miniaturized video cameras were deployed on 28 Wandering Albatrosses (Diomedea exulans) on Marion Island (one of the two Prince Edward Islands) from 2016 to 2018. The OpenCV library for the Python programming language was used to extract the angle of the horizon relative to the bird’s body (= bank angle) from footage when the birds were flying using a series of steps focused on edge detection. The extracted angles were not significantly different from angles measured manually by three independent observers, thus being a valid method to measure bank angles. Image quality, high wind speeds, and sunlight all influenced the accuracy of angle estimates, but post‐processing eliminated most of these errors. Birds flew most often with cross‐winds (58%) and tailwinds (39%), resulting in skewed distributions of bank angles when birds turned into the wind more often. Higher wind speeds resulted in extreme bank angles (maximum observed was 94°). We present a novel method for measuring postural data from seabirds that can be used to describe the fine‐scale movements of the dynamic‐soaring cycle. Birds appeared to alter their bank angle in response to varying wind conditions to counter wind drift associated with the prevailing westerly winds in the Southern Ocean. These data, in combination with fine‐scale positional data, may lead to new insights into dynamic‐soaring flight.  相似文献   
9.
10.
Potential interactions between climate change and exotic plant invasions may affect areas of high conservation value, such as land set aside for the protection of endangered species or ecological communities. We investigated this issue in eastern Australia using species distribution models for five exotic vines under climate regimes for 2020 and 2050. We examined how projected changes in the distribution of climatically suitable habitat may coincide with the remaining remnants of an endangered ecological community—littoral rainforests—in this region. The number of known infestations of each weed in tropical, subtropical and temperate areas was used to assess the likelihood of further expansion into areas projected to provide suitable habitat under future conditions. Littoral rainforest reserves were consistently predicted to provide bioclimatically suitable habitat for the five vines examined under both current and future climate scenarios. We explore the consequences and potential strategies for managing exotic plant invasions in these protected areas in the coming decades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号