首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   4篇
  2021年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1992年   1篇
  1991年   1篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
1.
Constitutive Fas ligand (FasL) expression by specialized cells in the body participates in the immune privilege status of tissues containing these cells. This property has been used to prevent rejection of allogeneic grafts. Nevertheless, the mechanism responsible for such protection has not been fully elucidated. Unfortunately, grafting of FasL transgenic (TG) tissues has been unsuccessful. We have generated TG mice expressing FasL (soluble + membrane bound) on thyroid follicular cells (TFC), and used them to show that ectopic FasL expression prevents thyroid allograft rejection. FasL expression on TFC led to markedly decreased anti-allogeneic, cytotoxic, and helper T lymphocyte activities. The alloantibody response in TG thyroid recipients was either completely inhibited or switched toward a T2-Ab response. Surprisingly, the beneficial effect of FasL on TG thyroid grafts was abolished by host CD4(+) T cell depletion. Host CD8(+) T cell depletion improved nontransgenic (NTG), but not TG graft survival. Altogether, our results suggest that FasL-induced tolerance is concomitant with a move away from a T1 type response, and a CD4 T cell-mediated regulation of the allocytotoxic T cell response. These results were dependent upon the level of FasL expression on TFC, in that low expression of FasL led to a less marked effect compared with the effect observed with high expression of FasL. These results provide some insight into the role of FasL in regulating destructive alloimmune responses in the case of whole organ grafting, and they have important implications for the development of FasL-based immunotherapy in organ transplantation.  相似文献   
2.
Lactococcus lactis strains from the subsp. cremoris are described as more sensitive to osmotic stress than subsp. lactis strains. We examined the relation between osmotic tolerance and the activity of the betaine transporter BusA among 34 strains of L. lactis. The cremoris strains that showed reduced growth at high osmolality failed to accumulate betaine. The nature of the defect was found to vary among cremoris strains: lack of the busA encoding region, absence of synthesis or synthesis of an inactive form of BusA. The results suggest that the selection of strains well fitted to the dairy production lead to the loss of an otherwise efficient adaptation mechanism.  相似文献   
3.
Lactococcus lactis is a Gram-positive bacteria, which belongs to the group of lactic acid bacteria among which several genera play an essential role in the manufacture of food products. Cytosolic proteins of L. lactis IL1403 cultivated in M17 broth have been resolved by two-dimensional gel electrophoresis using two pH gradients (pH 4-7, 4.5-5.5). More than 230 spots were identified by peptide mass fingerprints, corresponding to 25% of the predicted acid proteome. The present study made it possible to describe at the proteome level a significant number of cellular pathways (glycolysis, fermentation, nucleotide metabolism, proteolysis, fatty acid and peptidoglycan synthesis) related to important physiological processes and technological properties. It also indicated that the fermentative metabolism, which characterizes L. lactis is associated with a high expression of glycolytic enzymes. Thirty-four proteins were matched to open reading frames for which there is no assigned function. The comparison at the proteome level of two strains of L. lactis showed an important protein polymorphism. The comparison of the proteomes of glucose- and lactose-grown cells revealed an unexpected link between the nature of the carbon source and the metabolism of pyrimidine nucleotides.  相似文献   
4.
5.
6.
7.
We have modified elongation factor Tu (EF-Tu) from Escherichia coli via mutagenesis of its encoding tufA gene to study its function-structure relationships. The isolation of the N-terminal half molecule of EF-Tu (G domain) has facilitated the analysis of the basic EF-Tu activities, since the G domain binds the substrate GTP/GDP, catalyzes the GTP hydrolysis and is not exposed to the allosteric constraints of the intact molecule. So far, the best studied region has been the guanine nucleotide-binding pocket defined by the consensus elements typical for the GTP-binding proteins. In this area most substitutions were carried out in the G domain and were found to influence GTP hydrolysis. In particular, the mutation VG20 (in both G domain and EF-Tu) decreases this activity and enhances the GDP to GTP exchange; PT82 induces autophosphorylation of Thr82 and HG84 strongly affects the GTPase without altering the interaction with the substrate. SD173, a residue interacting with (O)6 of the guanine, abolishes the GTP and GDP binding activity. Substitution of residues Gln114 and Glu117, located in the proximity of the GTP binding pocket, influences respectively the GTPase and the stability of the G domain, whereas the double replacement VD88/LK121, located on alpha-helices bordering the GTP-binding pocket, moderately reduces the stability of the G domain without greatly affecting GTPase and interaction with GTP(GDP). Concerning the effect of ligands, EF-TuVG20 supports a lower poly(Phe) synthesis but is more accurate than wild-type EF-Tu, probably due to a longer pausing on the ribosome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
8.
Streptococcus agalactiae (or Group B Streptococcus, GBS) is a commensal bacterium present in the intestinal and urinary tracts of approximately 30% of humans. We and others previously showed that the PI-2a pilus polymers, made of the backbone pilin PilB, the tip adhesin PilA and the cell wall anchor protein PilC, promote adhesion to host epithelia and biofilm formation. Affinity-purified PI-2a pili from GBS strain NEM316 were recognized by N-acetylneuraminic acid (NeuNAc, also known as sialic acid) specific lectins such as Elderberry Bark Lectin (EBL) suggesting that pili are sialylated. Glycan profiling with twenty different lectins combined with monosaccharide composition by HPLC suggested that affinity-purified PI-2a pili are modified by N-glycosylation and decorated with sialic acid attached to terminal galactose. Analysis of various relevant mutants in the PI-2a pilus operon by flow-cytometry and electron microscopy analyses pointed to PilA as the pilus subunit modified by glycosylation. Double labeling using PilB antibody and EBL lectin, which specifically recognizes N-acetylneuraminic acid attached to galactose in α-2, 6, revealed a characteristic binding of EBL at the tip of the pilus structures, highly reminiscent of PilA localization. Expression of a secreted form of PilA using an inducible promoter showed that this recombinant PilA binds specifically to EBL lectin when produced in the native GBS context. In silico search for potentially glycosylated asparagine residues in PilA sequence pointed to N427 and N597, which appear conserved and exposed in the close homolog RrgA from S. pneumoniae, as likely candidates. Conversion of these two asparagyl residues to glutamyl resulted in a higher instability of PilA. Our results provide the first evidence that the tip PilA adhesin can be glycosylated, and suggest that this modification is critical for PilA stability and may potentially influence interactions with the host.  相似文献   
9.
10.
Lactic acid bacteria and proteomics: current knowledge and perspectives   总被引:9,自引:0,他引:9  
Lactic acid bacteria (LAB) are widely used in the agro-food industry. Some of the LAB also participate in the natural flora in humans and animals. We review here proteomic studies concerning LAB. Two methods of research can be distinguished. In the first one, a systematic mapping of proteins is attempted, which will be useful for taxonomy and to function assignment of proteins. The second one focuses particularly on proteins whose synthesis is induced by various environmental situations or stresses. However, both approaches are complementary and will give new insights for the use of bacteria in industry, in human health and in the struggle against bacterial pathogens. Interest in LAB is growing, showing thus an increasing concern of their rational use and one can foresee in the near future an increasing use of proteomics as well as genomics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号