首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1965篇
  免费   175篇
  2023年   8篇
  2022年   32篇
  2021年   52篇
  2020年   35篇
  2019年   42篇
  2018年   45篇
  2017年   36篇
  2016年   71篇
  2015年   116篇
  2014年   127篇
  2013年   124篇
  2012年   178篇
  2011年   168篇
  2010年   104篇
  2009年   75篇
  2008年   114篇
  2007年   112篇
  2006年   98篇
  2005年   96篇
  2004年   99篇
  2003年   72篇
  2002年   69篇
  2001年   27篇
  2000年   13篇
  1999年   19篇
  1998年   12篇
  1997年   16篇
  1996年   12篇
  1995年   9篇
  1994年   11篇
  1993年   9篇
  1992年   9篇
  1991年   15篇
  1990年   9篇
  1989年   11篇
  1988年   6篇
  1987年   4篇
  1986年   9篇
  1985年   10篇
  1984年   4篇
  1983年   9篇
  1982年   6篇
  1981年   5篇
  1979年   8篇
  1978年   6篇
  1975年   3篇
  1973年   4篇
  1970年   3篇
  1969年   2篇
  1966年   2篇
排序方式: 共有2140条查询结果,搜索用时 15 毫秒
1.
2.
Walking speed is a fundamental indicator for human well-being. In a clinical setting, walking speed is typically measured by means of walking tests using different protocols. However, walking speed obtained in this way is unlikely to be representative of the conditions in a free-living environment. Recently, mobile accelerometry has opened up the possibility to extract walking speed from long-time observations in free-living individuals, but the validity of these measurements needs to be determined. In this investigation, we have developed algorithms for walking speed prediction based on 3D accelerometry data (actibelt®) and created a framework using a standardized data set with gold standard annotations to facilitate the validation and comparison of these algorithms. For this purpose 17 healthy subjects operated a newly developed mobile gold standard while walking/running on an indoor track. Subsequently, the validity of 12 candidate algorithms for walking speed prediction ranging from well-known simple approaches like combining step length with frequency to more sophisticated algorithms such as linear and non-linear models was assessed using statistical measures. As a result, a novel algorithm employing support vector regression was found to perform best with a concordance correlation coefficient of 0.93 (95%CI 0.92–0.94) and a coverage probability CP1 of 0.46 (95%CI 0.12–0.70) for a deviation of 0.1 m/s (CP2 0.78, CP3 0.94) when compared to the mobile gold standard while walking indoors. A smaller outdoor experiment confirmed those results with even better coverage probability. We conclude that walking speed thus obtained has the potential to help establish walking speed in free-living environments as a patient-oriented outcome measure.  相似文献   
3.
The regulatory protein collybistin (CB) recruits the receptor-scaffolding protein gephyrin to mammalian inhibitory glycinergic and GABAergic postsynaptic membranes in nerve cells. CB is tethered to the membrane via phosphoinositides. We developed an in vitro assay based on solid-supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes doped with different phosphoinositides on silicon/silicon dioxide substrates to quantify the binding of various CB2 constructs using reflectometric interference spectroscopy. Based on adsorption isotherms, we obtained dissociation constants and binding capacities of the membranes. Our results show that full-length CB2 harboring the N-terminal Src homology 3 (SH3) domain (CB2SH3+) adopts a closed and autoinhibited conformation that largely prevents membrane binding. This autoinhibition is relieved upon introduction of the W24A/E262A mutation, which conformationally “opens” CB2SH3+ and allows the pleckstrin homology domain to properly bind lipids depending on the phosphoinositide species with a preference for phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate. This type of membrane tethering under the control of the release of the SH3 domain of CB is essential for regulating gephyrin clustering.  相似文献   
4.
5.
The structure of the lipopolysaccharide from Rhizobium meliloti 10406, a derivative of the wild-type strain MVII-1, was examined. The compositional analysis of its polysaccharide moiety demonstrated lack of heptose(s), but high contents in glucose, galacturonic acid and 2-keto-3-deoxy-octonate (dOclA) as characteristic features. The lipid A moiety consisted of a -1,6 linked glucosamine disaccharide carrying ester (at C-4) and glycosidically (at C-1) linked phosphate residues, both present exclusively as monoester phosphates but not as phosphodiesters. Ester- and amidelinked 3-hydroxy fatty acids were mostly present as non-3-O-acylated residues. Laser desorption mass spectrometry (LD-MS) revealed heterogeneity in the fatty acid substitution, as was also indicated by the non-stoichiometric ratios obtained by quantitative fatty acid analysis. The predominating lipid A structure contained at the reducing glucosamine residue ester-linked 3-hydroxy-tetradecanoic acid (3-OH-14:0) and amide-linked 3-OH-18:0, or 3-OH-18:1, respectively. The distal (non-reducing) glucosamine carried ester-bound the recently discovered 27-hydroxyoctacosanoic acid and 3-OH-14:0 and, as amide-linked fatty acid, mostly 3-hydroxy-stearic acid (3-OH-18:0).The isolated lipopolysaccharide exhibited a high extent of lethal toxicity in galactosamine-treated mice, comparable to that of enterobacterial lipopolysaccharide. The structural relationship of LPS and lipid A of Rhizobium meliloti to other rhizobial lipopolysaccharides and lipid A's with respect to questions of taxonomy and of phylogenetic relationships will be discussed.Abbreviations LPS lipopolysaccharide - dOclA 3-deoxy-D-mannooctulosonic acid (KDO) - GalA galacturonic acid - DOC sodium deoxycholate - PAGE polyacrylamide gel electrophoresis - LD-MS laser desorption-mass spectrometry  相似文献   
6.
A Ts cell subset has been identified in the spleens of responder mice 3 to 6 wk after immunization with an optimally immunogenic dose of L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). These Ts were positively selected by panning procedures by using a mAb (1248 A4.10) produced by immunization of rats with semipurified mouse GAT-specific, single polypeptide chain suppressor factor. These Ts cells inhibited the activity of virgin Th cells but not memory Th cells and this activity was genetically restricted by genes which are linked to the Ig H chain (Igh) locus on chromosome 12. Use of the Igh recombination strain, BAB.14, which has a crossover near the VHCH region junction, demonstrated that the genes regulating the Igh restriction map telomeric to the VH genes. The Igh-linked restriction regulated the interaction of A4.10+ Ts cells with virgin T cells and not B cells. However, A4.10+ Ts did not act directly on Lyt-2-Th cells, but required the presence of Lyt-2+ cells for suppression. Suppression by GAT-primed A4.10+-Ts cells also required syngenicity at Igh-linked genes by both Lyt-2- and Lyt-2+ T cells. These results indicated that A4.10+-Ts cells were inducer Ts cells which activated Lyt-2+ effector Ts cells which prevented primary GAT specific Th cell activity. The interaction between A4.10+-Ts inducer and effector Ts cells and/or the interaction of the effector Ts and its target cell were restricted by genes linked to the Igh constant region.  相似文献   
7.
Considerable information concerning the serology and biochemistry of antigen-specific, T cell-derived suppressor factors has been obtained with the use of T cell hybridomas as a source of homogeneous material. Similarly, knowledge of helper T cell products and receptors is accumulating from studies of helper T cell clones and hybridomas. Our strategy for studying the mechanisms by which suppressor factors inhibit responses was to determine whether monoclonal suppressor factors could inhibit antibody responses specific for L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) in cultures containing unprimed splenic B cells, macrophages, and GAT-specific T cell clones as a source of helper activity. The MHC-restricted, two chain suppressor factors, GAT-TsF2, inhibited these responses if the helper T cell clones and suppressor factor were derived from H-2-compatible mice. Furthermore, responses were inhibited by briefly pulsing T cell clones with GAT-TsF2 in the presence of GAT, indicating that suppressor factors need not be present continuously. In addition, helper T cell clones adsorbed syngeneic, but not allogeneic, GAT-TsF2 in the presence of GAT. Adsorption also requires a shared antigenic specificity between the H-2b-derived helper T cells and TsF2 factor. Thus, helper T cells can serve as the cellular target of antigen-specific, MHC-restricted GAT-TsF2, and cloned helper T cells can be used as a homogeneous target population for analysis of the molecular mechanisms of T cell suppression.  相似文献   
8.
Murine antibody responses to heterologous insulins are controlled by MHC-linked immune response genes. Although nonresponder mice fail to make antibody when injected with nonimmunogenic variants of insulin, we have recently shown that nonimmunogenic variants stimulate radioresistant, Lyt- 1+2- helper T cells that support secondary antibody responses. However, the helper activity can not be detected unless dominant, radiosensitive Lyt-1-2+, I-J+ suppressor T cells are removed. In this paper we report that extracts of primed Lyt-2+ suppressor T cells contain insulin-specific suppressor factors (TsF) that are capable of replacing the activity of suppressor T cells in vitro. The activity of these factors is restricted by MHC-linked genes that map to the I-J region, and immunoadsorption studies indicated that they bind antigen and bear I-J-encoded determinants. Insulin-specific TsF consists of at least two chains, one-bearing I-J and the other the antigen-binding site. Furthermore, mixing of isolated chains from different strains of mice indicates that the antigenic specificity is determined by the antigen-binding chain and the MHC restriction by the H-2 haplotype of the source of the non-antigen-binding, I-J+ chain. Moreover, mixtures containing antigen-binding chain from allogeneic cell donors and I-J+ chain from responder cell donors have activity in cultures containing responder lymphocytes. This suggests that preferential activation of suppressor T cells, rather than differential sensitivity to suppression, results in the nonresponder phenotype to insulin.  相似文献   
9.
A GAT-specific, MHC-restricted "second-order" suppressor T cell factor (TsF2) from the hybridoma 762 B3.7 was biosynthetically radiolabeled with 35S-methionine and was isolated from cell extracts. The isolation procedure involved two-dimensional nonreducing/reducing SDS-PAGE and electroelution of the reduced off-diagonal polypeptide chains from the gel. Biochemical characterization studies revealed that TsF2 is a disulfide-linked heterodimer composed of a basic and an acidic polypeptide chain, both having m.w. of 30,000. Both chains are glycosylated and contain sialic acid residues. The basic polypeptide reacts with anti-I-J antisera, whereas the acidic chain contains the antigen-binding capacity. Monoclonal antibodies induced by immunizing rats with TsF2 purified from hybridoma supernatants were selected for the ability to block immunosuppression mediated by TsF2 in vitro. These antibodies, but not irrelevant antibodies, immunoprecipitated the 35S-methionine-labeled protein that migrates off the diagonal in two-dimensional gels. Thus, we have verified that the immunosuppressive protein that migrates off the diagonal in two-dimensional gels binds to antibodies that are known to inhibit the biologic activity of unpurified TsF2.  相似文献   
10.
A GAT-specific "second order" suppressor T cell factor (TsF2) from the hybridoma 762 B3.7 has been purified and biochemically characterized. The protein has a m.w. of approximately 66,000, an isoelectric point of 6.8 to 6.9, and elutes from a reversed phase HPLC column in two peaks, one in 55% acetonitrile, the other in 70% propanol. Amino acid analysis of both forms gave similar molar ratios, suggesting that the two forms are closely related and may differ mainly in the degree of posttranslational modification. SDS-PAGE electrophoresis under reducing conditions gave two chains of the apparent m.w. of 42,000 and 35,000.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号