首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2234篇
  免费   108篇
  2342篇
  2024年   13篇
  2023年   11篇
  2022年   15篇
  2021年   23篇
  2020年   33篇
  2019年   42篇
  2018年   73篇
  2017年   57篇
  2016年   78篇
  2015年   108篇
  2014年   130篇
  2013年   138篇
  2012年   176篇
  2011年   168篇
  2010年   99篇
  2009年   73篇
  2008年   128篇
  2007年   113篇
  2006年   115篇
  2005年   91篇
  2004年   86篇
  2003年   71篇
  2002年   66篇
  2001年   34篇
  2000年   27篇
  1999年   23篇
  1998年   17篇
  1997年   9篇
  1996年   9篇
  1995年   9篇
  1994年   10篇
  1993年   11篇
  1992年   17篇
  1991年   19篇
  1990年   16篇
  1989年   14篇
  1988年   10篇
  1987年   15篇
  1986年   9篇
  1985年   15篇
  1984年   9篇
  1983年   11篇
  1982年   10篇
  1979年   11篇
  1977年   9篇
  1975年   9篇
  1973年   10篇
  1972年   8篇
  1969年   7篇
  1967年   11篇
排序方式: 共有2342条查询结果,搜索用时 0 毫秒
1.
On the inducibility of nitrate transport by tobacco cells   总被引:1,自引:0,他引:1  
The question as to whether the nitrate transport system is induced by nitrate was addressed using a cell suspension of the XD line of Nicotiana tabacum L. cv. Xanthi as an experimental system. The cells were grown on area as the sole nitrogen source, and tungstate was used to render nitrate reductase non-functional. To avoid shock due to vacuum filtration, the cells, were harvested by gravity filtration. Nitrate uptake by cells, which were harvested, transferred to fresh medium, and immediately exposed to nitrate (freshly harvested cells), displayed a lag period of about 3 h.
In cells which were given incubation periods in fresh medium before exposure to nitrate (preincubated cells), the lag period was considerably shortened. After 3 h of preincubation in the absence of nitrate (recovered cells), the lag period was almost completely eliminated. Cycloheximide inhibited nitrate uptake by recovered cells within minutes, and prevented the development of nitrate uptake in freshly harvested cells. Cycloheximide did not affect uptake of α-aminoisobutyric acid (AIB) within the first 2 h after its addition. Recovery of the membrane potential from a low value just after the harvest of the cells to a maximal value 3 h later, was observed using the lipophilic cation methyltriphenylphosphonium (MTPP+), supplied at low concentrations, as a probe. Depolarization of the membrane potential by MTPP+, at the millimolar range, caused a rapid inhibition of nitrate uptake by recovered cells. The results indicate that nitrate transport by the XD cells depends on the membrane potential and on protein components with short half life. In addition, it requires a continuous protein synthesis. The effects of physical manipulation on nitrate uptake are discussed.  相似文献   
2.
Callus cell lines of potato (Solanum tuberosum L. cv. Zarevo) were obtained from seedlings germinated from gamma-irradiated seeds (200 Gy). Some of these cell lines produce red-violet pigments which were identified as acylated anthocyanins. The major anthocyanin was determined to be peonidin 3-O-[6-O-(4-O-E-p-coumaroyl-rhamnosyl)-glucoside]-5-O-glucoside (peonanin). Single cell-derived protoclones from non-pigmented protoplasts sometimes also gave rise to pigmented cell clusters thus indicating that the changes in the expression of the anthocyanin pathway can also occur after the stage of initial callus induction.  相似文献   
3.
4.
5.
Primary ciliary dyskinesia: genes, candidate genes and chromosomal regions   总被引:9,自引:0,他引:9  
Primary ciliary dyskinesia (PCD) is a multisystem disease characterized by recurrent respiratory tract infections, sinusitis, bronchiectasis and male subfertility, associated in about 50% patients with situs inversus totalis (the Kartagener syndrome). The disease phenotype is caused by ultrastructural defects of respiratory cilia and sperm tails. PCD is a heterogenetic disorder, usually inherited as an autosomal recessive trait. So far, mutations in two human genes have been proved to cause the disease. However, the pathogenetics of most PCD cases remains unsolved. In this review, the disease pathomechanism is discussed along with the genes that are or may be involved in the pathogenesis of primary ciliary dyskinesia and the Kartagener syndrome.  相似文献   
6.
7.
8.
9.

Background

The bovine rumen maintains a diverse microbial community that serves to break down indigestible plant substrates. However, those bacteria specifically adapted to degrade cellulose, the major structural component of plant biomass, represent a fraction of the rumen microbiome. Previously, we proposed scaC as a candidate for phylotyping Ruminococcus flavefaciens, one of three major cellulolytic bacterial species isolated from the rumen. In the present report we examine the dynamics and diversity of scaC-types both within and between cattle temporally, following a dietary switch from corn-silage to grass-legume hay. These results were placed in the context of the overall bacterial population dynamics measured using the 16S rRNA.

Principal Findings

As many as 117 scaC-types were estimated, although just nineteen were detected in each of three rumens tested, and these collectively accounted for the majority of all types present. Variation in scaC populations was observed between cattle, between planktonic and fiber-associated fractions and temporally over the six-week survey, and appeared related to scaC phylogeny. However, by the sixth week no significant separation of scaC populations was seen between animals, suggesting enrichment of a constrained set of scaC-types. Comparing the amino-acid translation of each scaC-type revealed sequence variation within part of the predicted dockerin module but strong conservation in the N-terminus, where the cohesin module is located.

Conclusions

The R. flavefaciens species comprises a multiplicity of scaC-types in-vivo. Enrichment of particular scaC-types temporally, following a dietary switch, and between fractions along with the phylogenetic congruence suggests that functional differences exist between types. Observed differences in dockerin modules suggest at least part of the functional heterogeneity may be conferred by scaC. The polymorphic nature of scaC enables the relative distribution of R. flavefaciens strains to be examined and represents a gene-centric approach to investigating the intraspecific adaptation of an important specialist population.  相似文献   
10.
Silver-exchanged silicate glass has been irradiated by 532-nm pulsed Nd:YAG laser in order to locally form metallic nanoparticles. The particular interest of this process is to locally control the silver nanoparticles (NPs) growth. Silver ions are exchanged with sodium ions near the glass surface after dumping of a silicate glass few minutes in silver and sodium nitrates molten salt. A low-energy density laser exposure (0.239 J/cm2) chosen at the ablation threshold allows to observe the kinetics of the silver NPs growth according to the increasing shots number. An on-line optical measurement is carried out after each shot to identify the most important steps during the irradiation process. According to this measurement, we have determined four steps highlighted by UV/Visible spectrophotometry and we have identified the influence of located surface plasmon resonance. Three combined material analysis methods were used to understand the glass/laser interaction mechanism: we outlined the material volume variations by profilometric method, the element distribution by scanning electron microscopy and finally the structural distribution of the irradiated region by a local infrared investigation. The trend for NPs formation revealed by the UV/Visible spectrophotometry is thus explained by the formation of a ring expelled from a central hole. We highlight that the on-line extinction measurement can be used to data process the NPs evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号