首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  2021年   1篇
  2017年   3篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1994年   1篇
  1978年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Ion exchange properties of plant root cell walls   总被引:1,自引:0,他引:1  
Meychik  N.R.  Yermakov  I.P. 《Plant and Soil》2001,234(2):181-193
Acid-base properties and the swelling capacity of wheat, lupin and pea root cell walls were investigated. Roots of seedlings and green plants of different age were analysed by the potentiometric method. The ion exchange capacity (S i) and the swelling coefficient (K cw) of root cell walls were estimated at various pH values (from 2 to 12) and at different ionic strength (between 0.3 and 1000 mM). To analyse the polysigmoid titration curves pHi = f (S i), the Gregor's equation was employed. It was shown that the Gregor's model fits well the experimental data. The total number of the cation exchange (S t cat) and the anion exchange (S t an) groups were determined in the root cell walls. The number of the functional group of each type (S j) was estimated, and the corresponding values of pK a j were calculated. It was shown that for all types of cation exchangeable groups arranged in the cell wall structure the acid properties are enhanced by the increasing concentration of electrolyte. For each ionogenic group the coefficients of Helfferich's equation [pK a j = f (C K+)] were determined. It was found that the swelling of root cell walls changes with pH, C K+ and strongly depends on plant species. Within the experimental pH and C K+ range the swelling coefficient changes as follows: lupin > pea > wheat. The obtained results show that for the plant species under investigation the differences in the swelling coefficients originate from (a) the differences in the cross-linking degrees of polymeric chains arranged in the cell wall structure, (b) the differences in the number of carboxyl groups and (c) the differences in the total number of functional groups. Based on the estimated swelling coefficients in water it could be inferred that for wheat the cross-linking degree of the polymeric chains in the root cell walls is higher than those for lupin or pea. It has been emphasized that the calculated parameters (S j, pK a j, K cw), the equation {pK a j = f (CK+)} and the dependencies {K cw = f (CK+, pH)} allow to estimate quantitatively the changes in the ion exchange capacity of the root cell walls in response to the changes in an ionic composition of an outer solution. The results of these estimations allow to suggest that (a) the root apoplast is a compartment where the accumulation of cations takes place during the first stage of cation uptake from an outer medium, and (b) the accumulation degree is defined by pH and ionic composition of an outer solution. On the basis of the literature review and the results of the present experimental study it was proposed that the changes in the cell wall swelling in response to variances of environmental or experimental conditions could lead to a change of the water flow through a root apoplast. It has been supported that there is direct relationship between the swelling of root cell walls and the water flow within the plant root apoplast.  相似文献   
2.
3.
The ion-exchange properties of cell wall polymers isolated from the roots of wheat (Triticum aestivum L.) plants grown on either nitrate-free (N-deficient) or nitrate-containing (+N) hydroponic nutrient medium have been investigated. Irrespective of the nitrogen nutrition regimen, the studied cell walls contained four types of ion-exchange groups: primary amino groups of structural proteins (pKa < 3), carboxyl groups of polygalacturonic acid in pectin (pK a ~4.7), carboxyl groups of hydroxycinnamic acids (pK a ~7.3), and phenolic OH-groups of lignin (pKa ~10.2). The quantitative ratio between these types of ion-exchange groups, the mass fraction of cell walls in the dry weight of roots, and the swelling coefficient of cell walls depended on the nitrate presence in the growing medium. Compared to the +N variant, the N-deficient variant was characterized by a 2.4 times higher content of phenolic OH-groups in cell walls and 1.24 times higher mass fraction of cell walls; at the same time, the swelling coefficient for this variant was lower by 10%. The obtained data indicate that nitrogen deficiency results in a formation of thicker root cell walls with a higher degree of polymer cross-linking that may be caused by the increased lignin content.  相似文献   
4.
5.
Acid–base properties of cell walls isolated from various root tissues of 7-day-old lupine seedlings and 14-day-old lupine plants grown in various media were studied. The ion-exchange capacity of root cell walls was estimated at various pH values (from 2 to 12) and constant ionic strength (10 mM). The parameters determining the qualitative and quantitative composition of cell wall ionogenic groups along the root length and in its radial direction were estimated using Gregor's model. This model fits the experimental data reasonably well. Four types of ionogenic groups were found in the cell walls: an amino group (pK a 3), two types of carboxylic groups (pK a 5 and 7.3, the first being the carboxylic group of galacturonic acid), and a phenolic group (pK a 10). The number of functional groups of each type was estimated, and the corresponding ionization constant values were calculated. It is shown that the chemical composition of the ionogenic groups was constant along the root length as well as in its radial direction and did not depend on either physiological state or root nutrition, while the number of different groups varied. The content of carboxylic groups of -D-polygalacturonic acid in the root cell walls of 14-day-old plants was shown to depend on the distance from the root tip, being maximal in the zone of lateral roots. The number of these groups was 10- and 2-fold less in the central cylinder compared to that of cortex for 14-day-old plants and 7-day-old seedlings, respectively.  相似文献   
6.

Background  

Metabolically versatile soil bacteria Burkholderia cepacia complex (Bcc) have emerged as opportunistic pathogens, especially of cystic fibrosis (CF). Previously, we initiated the characterization of the phenylacetic acid (PA) degradation pathway in B. cenocepacia, a member of the Bcc, and demonstrated the necessity of a functional PA catabolic pathway for full virulence in Caenorhabditis elegans. In this study, we aimed to characterize regulatory elements and nutritional requirements that control the PA catabolic genes in B. cenocepacia K56-2.  相似文献   
7.
Ion-exchange properties of polymeric matrices were compared for cell wall preparations isolated from roots and shoots of two cultivars of Cicer arietinum L. (cvs. Bivanij and ILC 482) with different sensitivities to salinity. Irrespective of growth conditions, the cell walls contained four types of ionogenic groups: amino groups, carboxyl groups of uronic and hydroxycinnamic acids, and phenolic hydroxyl groups. Regardless of the salt concentration in the medium, the cells walls of different chickpea cultivars and from different organs of the same plant were similar in qualitative composition of ionogenic groups, although quantities of ionogenic groups per unit dry wt of cell walls varied depending on external and internal factors. Irrespective of the external medium salinity, the cation-exchange capacity of cell walls, expressed per unit dry wt, decreased in a sequence: stem > root ∼ bottom leaves > upper leaves. The volume of chickpea cell walls was found to vary depending on ionic composition and pH of the incubation medium. The results were analyzed in the context of cell wall involvement in responses of C. arietinum to elevated salinity.  相似文献   
8.
Cell walls were isolated from roots of six plant species to study their ion-exchange capacity for nickel ions (S Ni) at Ni2+ concentration of 10−3 M. The S Ni values varied depending on the plant species from 50 to 150 μmol Ni2+ per gram dry wt; the sorption capacity increased in a row: Poaceae < Chenopodiaceae < Fabaceae. At pH 5 the sorption capacity of cell walls for nickel ions was determined by the presence of carboxyl groups of polygalacturonic acid in the polymeric cell-wall matrix. In all cases the ion-exchange capacity of cell walls was higher at pH 8 than at pH 5, indicating that Ni2+ binds also to a carboxyl group different from that of polygalacturonic acid. Irrespective of plant species, the presence of EDTA in the solution diminished drastically the absorption capacity of cell walls for Ni2+. It is concluded that the presence of 10−3 M EDTA weakens the defense properties of cell walls. The sequestration of Ni2+ in the cell wall can be considered as an effective means of plant cell defense against elevated concentrations of nickel ions in the external medium.  相似文献   
9.
Type 2 inflammation is a defining feature of infection with parasitic worms (helminths), as well as being responsible for widespread suffering in allergies. However, the precise mechanisms involved in T helper (Th) 2 polarization by dendritic cells (DCs) are currently unclear. We have identified a previously unrecognized role for type I IFN (IFN‐I) in enabling this process. An IFN‐I signature was evident in DCs responding to the helminth Schistosoma mansoni or the allergen house dust mite (HDM). Further, IFN‐I signaling was required for optimal DC phenotypic activation in response to helminth antigen (Ag), and efficient migration to, and localization with, T cells in the draining lymph node (dLN). Importantly, DCs generated from Ifnar1?/? mice were incapable of initiating Th2 responses in vivo. These data demonstrate for the first time that the influence of IFN‐I is not limited to antiviral or bacterial settings but also has a central role to play in DC initiation of Th2 responses.  相似文献   
10.
Ion-exchange properties of cell walls were investigated in reindeer lichen Cladonia rangiferina (L.) F. H. Wigg. In order to isolate cell walls, we used living parts of podetia as well as young parts (four upper internodes of podetia) and old parts (from the 4th to the 8th internode). We studied functional dependences of cell wall ion-exchange capacity on pH in the range from 2 to 12 and constant ionic strength of solution equal to 10 mM. It was found that three-dimensional structure of C. rangiferina cell walls comprised three types of ionogenic groups, which determine ion-exchange properties of the cell walls. They are amino groups with pKa of about 3, carboxyl groups with pKa of about 7, and phenolic OH-groups with pKa of about 10. The content of groups of each type and their ionization constants were determined, and it was shown that, in the cell walls of young parts, the content of amino groups and carboxylic groups was greater than in old parts of podetia (by 1.5 and 2.0 times, respectively). It was found that with age the content of nitrogen and the proportion of deacetylated amino groups in the cell walls changed from 34% (young parts of podetia) to 40% (old parts of podetia). It was shown that in C. rangiferina N-acetyl glucosamine and glucosamine are not the main monomers of cell wall polymers because both in thalli and in the cell walls isolated therefrom the content of total nitrogen was less than 1%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号