首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  29篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1987年   1篇
  1982年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11 % of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches.  相似文献   
2.
Multi-scale modeling of biological systems has recently become fashionable due to the growing power of digital computers as well as to the growing realization that integrative systems behavior is as important to life as is the genome. While it is true that the behavior of a living organism must ultimately be traceable to all its components and their myriad interactions, attempting to codify this in its entirety in a model misses the insights gained from understanding how collections of system components at one level of scale conspire to produce qualitatively different behavior at higher levels. The essence of multi-scale modeling thus lies not in the inclusion of every conceivable biological detail, but rather in the judicious selection of emergent phenomena appropriate to the level of scale being modeled. These principles are exemplified in recent computational models of the lung. Airways responsiveness, for example, is an organ-level manifestation of events that begin at the molecular level within airway smooth muscle cells, yet it is not necessary to invoke all these molecular events to accurately describe the contraction dynamics of a cell, nor is it necessary to invoke all phenomena observable at the level of the cell to account for the changes in overall lung function that occur following methacholine challenge. Similarly, the regulation of pulmonary vascular tone has complex origins within the individual smooth muscle cells that line the blood vessels but, again, many of the fine details of cell behavior average out at the level of the organ to produce an effect on pulmonary vascular pressure that can be described in much simpler terms. The art of multi-scale lung modeling thus reduces not to being limitlessly inclusive, but rather to knowing what biological details to leave out.  相似文献   
3.
BackgroundTyphoid persists as a major cause of global morbidity. While several licensed vaccines to prevent typhoid are available, they are of only moderate efficacy and unsuitable for use in children less than two years of age. Development of new efficacious vaccines is complicated by the human host-restriction of Salmonella enterica serovar Typhi (S. Typhi) and lack of clear correlates of protection. In this study, we aimed to evaluate the protective efficacy of a single dose of the oral vaccine candidate, M01ZH09, in susceptible volunteers by direct typhoid challenge.ConclusionsDespite successfully demonstrating the use of a human challenge study to directly evaluate vaccine efficacy, a single-dose M01ZH09 failed to demonstrate significant protection after challenge with virulent Salmonella Typhi in this model. Anti-Vi antibody detected prior to vaccination played a major role in outcome after challenge.

Trial registration

ClinicalTrials.gov (NCT01405521) and EudraCT (number 2011-000381-35).  相似文献   
4.
We present an image functional modeling approach, which synthesizes imaging and mechanical data with anatomically explicit computational models. This approach is utilized to identify the relative importance of small and large airways in the simultaneous deterioration of mechanical function and ventilation in asthma. Positron emission tomographic (PET) images provide the spatial distribution and relative extent of ventilation defects in asthmatic subjects postbronchoconstriction. We also measured lung resistance and elastance from 0.15 to 8 Hz. The first step in image functional modeling involves mapping ventilation three-dimensional images to the computational model and identifying the largest sized airways of the model that, if selectively constricted, could precisely match the size and anatomic location of ventilation defects imaged by PET. In data from six asthmatic subjects, these airways had diameters <2.39 mm and mostly <0.44 mm. After isolating and effectively closing airways in the model associated with these ventilation defects, we imposed constriction with various means and standard deviations to the remaining airways to match the measured lung resistance and elastance from the same subject. Our results show that matching both the degree of mechanical impairment and the size and location of the PET ventilation defects requires either constriction of airways <2.4 mm alone, or a simultaneous constriction of small and large airways, but not just large airways alone. Also, whereas larger airway constriction may contribute to mechanical dysfunction during asthma, degradation in ventilation function requires heterogeneous distribution of near closures confined to small airways.  相似文献   
5.
Avian influenza continues to circulate and remains a global health threat not least because of the associated high mortality. In this study antibody persistence, booster vaccine response and cross-clade immune response between two influenza A(H5N1) vaccines were compared. Participants aged over 18-years who had previously been immunized with a clade 1, A/Vietnam vaccine were re-immunized at 6-months with 7.5 μg of the homologous strain or at 22-months with a clade 2, alum-adjuvanted, A/Indonesia vaccine. Blood sampled at 6, 15 and 22-months after the primary course was used to assess antibody persistence. Antibody concentrations 6-months after primary immunisation with either A/Vietnam vaccine 30 μg alum-adjuvanted vaccine or 7.5 μg dose vaccine were lower than 21-days after the primary course and waned further with time. Re-immunization with the clade 2, 30 μg alum-adjuvanted vaccine confirmed cross-clade reactogenicity. Antibody cross-reactivity between A(H5N1) clades suggests that in principle a prime-boost vaccination strategy may provide both early protection at the start of a pandemic and improved antibody responses to specific vaccination once available.Trial Registration: ClinicalTrials.gov NCT00415129  相似文献   
6.

Background

When rates of uptake of other drugs differ between treatment arms in long-term trials, the true benefit or harm of the treatment may be underestimated. Methods to allow for such contamination have often been limited by failing to preserve the randomization comparisons. In the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study, patients were randomized to fenofibrate or placebo, but during the trial many started additional drugs, particularly statins, more so in the placebo group. The effects of fenofibrate estimated by intention-to-treat were likely to have been attenuated. We aimed to quantify this effect and to develop a method for use in other long-term trials.

Methodology/Principal Findings

We applied efficacies of statins and other cardiovascular drugs from meta-analyses of randomized trials to adjust the effect of fenofibrate in a penalized Cox model. We assumed that future cardiovascular disease events were reduced by an average of 24% by statins, and 20% by a first other major cardiovascular drug. We applied these estimates to each patient who took these drugs for the period they were on them. We also adjusted the analysis by the rate of discontinuing fenofibrate. Among 4,900 placebo patients, average statin use was 16% over five years. Among 4,895 assigned fenofibrate, statin use was 8% and nonuse of fenofibrate was 10%. In placebo patients, use of cardiovascular drugs was 1% to 3% higher. Before adjustment, fenofibrate was associated with an 11% reduction in coronary events (coronary heart disease death or myocardial infarction) (P = 0.16) and an 11% reduction in cardiovascular disease events (P = 0.04). After adjustment, the effects of fenofibrate on coronary events and cardiovascular disease events were 16% (P = 0.06) and 15% (P = 0.008), respectively.

Conclusions/Significance

This novel application of a penalized Cox model for adjustment of a trial estimate of treatment efficacy incorporates evidence-based estimates for other therapies, preserves comparisons between the randomized groups, and is applicable to other long-term trials. In the FIELD study example, the effects of fenofibrate on the risks of coronary heart disease and cardiovascular disease events were underestimated by up to one-third in the original analysis.

Trial Registration

Controlled-Trials.com ISRCTN64783481  相似文献   
7.
8.
The cell wall determines the shape of plant cells and is also the primary interface for pathogen interactions. The structure of the cell wall can be modified in response to developmental and environmental cues, for example to strengthen the wall and to create barriers to pathogen ingress. The ectopic lignin 1-1 and 1-2 (eli1-1 and eli1-2) mutations lead to an aberrant deposition of lignin, a complex phenylpropanoid polymer. We show that the eli1 mutants occur in the cellulose synthase gene CESA3 in Arabidopsis thaliana and cause reduced cellulose synthesis, providing further evidence for the function of multiple CESA subunits in cellulose synthesis. We show that reduced levels of cellulose synthesis, caused by mutations in cellulose synthase genes and in genes affecting cell expansion, activate lignin synthesis and defense responses through jasmonate and ethylene and other signaling pathways. These observations suggest that mechanisms monitoring cell wall integrity can activate lignification and defense responses.  相似文献   
9.
We have investigated the use of spectral imaging for multi-color analysis of permanent cytochemical dyes and enzyme precipitates on cytopathological specimens. Spectral imaging is based on Fourier-transform spectroscopy and digital imaging. A pixel-by-pixel spectrum-based color classification is presented of single-, double-, and triple-color in situ hybridization for centromeric probes in T24 bladder cancer cells, and immunocytochemical staining of nuclear antigens Ki-67 and TP53 in paraffin-embedded cervical brush material (AgarCyto). The results demonstrate that spectral imaging unambiguously identifies three chromogenic dyes in a single bright-field microscopic specimen. Serial microscopic fields from the same specimen can be analyzed using a spectral reference library. We conclude that spectral imaging of multi-color chromogenic dyes is a reliable and robust method for pixel color recognition and classification. Our data further indicate that the use of spectral imaging (a) may increase the number of parameters studied simultaneously in pathological diagnosis, (b) may provide quantitative data (such as positive labeling indices) more accurately, and (c) may solve segmentation problems currently faced in automated screening of cell- and tissue specimens.  相似文献   
10.
Candidatus Dormibacterota is an uncultured bacterial phylum found predominantly in soil that is present in high abundances within cold desert soils. Here, we interrogate nine metagenome-assembled genomes (MAGs), including six new MAGs derived from soil metagenomes obtained from two eastern Antarctic sites. Phylogenomic and taxonomic analyses revealed these MAGs represent four genera and five species, representing two order-level clades within Ca. Dormibacterota. Metabolic reconstructions of these MAGs revealed the potential for aerobic metabolism, and versatile adaptations enabling persistence in the ‘extreme’ Antarctic environment. Primary amongst these adaptations were abilities to scavenge atmospheric H2 and CO as energy sources, as well as using the energy derived from H2 oxidation to fix atmospheric CO2 via the Calvin–Bassham–Benson cycle, using a RuBisCO type IE. We propose that these allow Ca. Dormibacterota to persist using H2 oxidation and grow using atmospheric chemosynthesis in terrestrial Antarctica. Fluorescence in situ hybridization revealed Ca. Dormibacterota to be coccoid cells, 0.3–1.4 μm in diameter, with some cells exhibiting the potential for a symbiotic or syntrophic lifestyle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号