首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   18篇
  166篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   10篇
  2012年   18篇
  2011年   9篇
  2010年   11篇
  2009年   13篇
  2008年   14篇
  2007年   9篇
  2006年   2篇
  2005年   8篇
  2004年   11篇
  2003年   7篇
  2002年   9篇
  2001年   2篇
  2000年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1979年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
1.
Phosphatidic acid (PA) and phosphoinositides are metabolically interconverted lipid second messengers that have central roles in many growth factor (GF)‐stimulated signalling pathways. Yet, little is known about the mechanisms that coordinate their production and downstream signalling. Here we show that the phosphatidylinositol (PI)‐transfer protein Nir2 translocates from the Golgi complex to the plasma membrane in response to GF stimulation. This translocation is triggered by PA formation and is mediated by its C‐terminal region that binds PA in vitro. We further show that depletion of Nir2 substantially reduces the PI(4,5)P2 levels at the plasma membrane and concomitantly GF‐stimulated PI(3,4,5)P3 production. Finally, we show that Nir2 positively regulates the MAPK and PI3K/AKT pathways. We propose that Nir2 through its PA‐binding capability and PI‐transfer activity can couple PA to phosphoinositide signalling, and possibly coordinates their local lipid metabolism and downstream signalling.  相似文献   
2.
α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson''s disease (PD). It is an intrinsically disordered protein that binds acidic phospholipids. Growing evidence supports a role for α-Syn in membrane trafficking, including, mechanisms of endocytosis and exocytosis, although the exact role of α-Syn in these mechanisms is currently unclear. Here we investigate the associations of α-Syn with the acidic phosphoinositides (PIPs), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). Our results show that α-Syn colocalizes with PIP2 and the phosphorylated active form of the clathrin adaptor protein 2 (AP2) at clathrin-coated pits. Using endocytosis of transferrin as an indicator for clathrin-mediated endocytosis (CME), we find that α-Syn involvement in endocytosis is specifically mediated through PI(4,5)P2 levels on the plasma membrane. In accord with their effects on PI(4,5)P2 levels, the PD associated A30P, E46K, and A53T mutations in α-Syn further enhance CME in neuronal and nonneuronal cells. However, lysine to glutamic acid substitutions at the KTKEGV repeat domain of α-Syn, which interfere with phospholipid binding, are ineffective in enhancing CME. We further show that the rate of synaptic vesicle (SV) endocytosis is differentially affected by the α-Syn mutations and associates with their effects on PI(4,5)P2 levels, however, with the exception of the A30P mutation. This study provides evidence for a critical involvement of PIPs in α-Syn–mediated membrane trafficking.  相似文献   
3.
Chronic pain is highly variable between individuals, as is the response to analgesics. Although much of the variability in chronic pain and analgesic response is heritable, an understanding of the genetic determinants underlying this variability is rudimentary. Here we show that variation within the coding sequence of the gene encoding the P2X7 receptor (P2X7R) affects chronic pain sensitivity in both mice and humans. P2X7Rs, which are members of the family of ionotropic ATP-gated receptors, have two distinct modes of function: they can function through their intrinsic cationic channel or by forming nonselective pores that are permeable to molecules with a mass of up to 900 Da. Using genome-wide linkage analyses, we discovered an association between nerve-injury-induced pain behavior (mechanical allodynia) and the P451L mutation of the mouse P2rx7 gene, such that mice in which P2X7Rs have impaired pore formation as a result of this mutation showed less allodynia than mice with the pore-forming P2rx7 allele. Administration of a peptide corresponding to the P2X7R C-terminal domain, which blocked pore formation but not cation channel activity, selectively reduced nerve injury and inflammatory allodynia only in mice with the pore-forming P2rx7 allele. Moreover, in two independent human chronic pain cohorts, a cohort with pain after mastectomy and a cohort with osteoarthritis, we observed a genetic association between lower pain intensity and the hypofunctional His270 (rs7958311) allele of P2RX7. Our findings suggest that selectively targeting P2X7R pore formation may be a new strategy for individualizing the treatment of chronic pain.  相似文献   
4.
Wheat (Triticum aestivum L. cv Jubilar) seedlings were grown for 10 days in hydroponics with or without calcium. In the leaves, Ca deficiency caused the level of ethanol soluble carbohydrate to increase between 2-and 10-fold, enhanced dark respiration and decreased CO2 fixation capacity. Sucrose was the major carbohydrate to accumulate in wheat roots.  相似文献   
5.
Phenolic acids were separated into three fractions and determined by HPLC inMedicago sativa callus culture at the age of two, three and four weeks. The contents of free and especially of predominating ester-bound phenolic acids decreased with callus age to approx. 80 % while the content of phenolic acids nonextractable by methanol increased byca. 90 %. The proportion of benzoic acid derivatives rose from 15 to 21 % within four weeks. The determined difference in the contents of phenolic acids in the upper and lower parts of callus diminished with age. The content of bound forms was higher in the lower part regardless of the callus age. The content of free acids in two weeks old callus was half as high as in the upper part.  相似文献   
6.
Culture, Medicine, and Psychiatry - To explore the role of culture in communicating with cancer patients about mental health distress and suicidality. The Grounded Theory method of data collection...  相似文献   
7.
8.
c-Abl tyrosine kinase selectively regulates p73 nuclear matrix association   总被引:5,自引:0,他引:5  
p73 is a structural and functional homologue of the p53 tumor-suppressor protein. Like p53, p73 is activated in response to DNA-damaging insults to induce cell cycle arrest or apoptosis. Under these conditions p73 is tyrosine-phosphorylated by c-Abl, a prerequisite modification for p73 to elicit cell death in fibroblasts. In this study we report that in response to ionizing radiation, p73 undergoes nuclear redistribution and becomes associated with the nuclear matrix. This association is c-Abl-dependent because it was not observed in cells that are defective in c-Abl kinase activation. Moreover, STI-571, a specific c-Abl kinase inhibitor, is sufficient to block significantly p73 alpha nuclear matrix association. The observed c-Abl dependence of nuclear matrix association was recapitulated in the heterologous baculovirus system. Under these conditions p73 alpha but not p53 is specifically tyrosine-phosphorylated by c-Abl. Moreover, the phosphorylated p73 alpha is predominantly found in association with the nuclear matrix. Thus, in response to ionizing radiation p73 is modified in a c-Abl-dependent manner and undergoes nuclear redistribution and translocates to associate with the nuclear matrix. Our data describe a novel mechanism of p73 regulation.  相似文献   
9.
Increased oxidative stress is believed to be one of the mechanisms responsible for hyperglycemia-induced tissue damage and diabetic complications. In these studies, we undertook to characterize glucose uptake and oxidative stress in adipocytes of type 2 diabetic animals and to determine whether these promote the activation of PKC-delta. The adipocytes used were isolated either from C57Bl/6J mice that were raised on a high-fat diet (HF) and developed obesity and insulin resistance or from control animals. Basal glucose uptake significantly increased (8-fold) in HF adipocytes, and this was accompanied with upregulation of GLUT1 expression levels. Insulin-induced glucose uptake was inhibited in HF adipocytes and GLUT4 content reduced by 20% in these adipocytes. Reactive oxygen species (ROS) increased twofold in HF adipocytes compared with control adipocytes and were largely reduced with decreased glucose concentrations. At zero glucose, ROS levels were reduced to the normal levels seen in control adipocytes. The activity of PKC-delta increased twofold in HF adipocytes compared with control adipocytes and was further activated by H2O2. Moreover, PKC-delta activity was inhibited in HF adipocytes either by glucose deprivation or by treatment with the antioxidant N-acetyl-l-cysteine. In summary, we propose that increased glucose intake in HF adipocytes increases oxidative stress, which in turn promotes the activation of PKC-delta. These consequential events may be responsible, at least in part, for development of HF diet-induced insulin resistance in the fat tissue.  相似文献   
10.
In cultured human vascular smooth muscle cells (VSMC), estradiol-17beta (E2) induced a biphasic effect on DNA synthesis, i.e., stimulation at low concentrations and inhibition at high concentrations. Additionally, E2 increased the specific activity of creatine kinase (CK) in these cells. Observations that novel protein-bound membrane impermeant estrogenic complexes could elicit inhibition of DNA synthesis, suggested interaction via membranal binding sites. Nevertheless other effects, such as increasing CK activity were only seen with native E2 but not with E2-BSA, thus indicating that the classical nuclear receptor pathway was involved. In the present report, we confirm that human VSMC express both ERalpha and ERbeta. Further, pretreatment of cultured VSMC with the Vitamin D non-calcemic analog JK 1624 F2-2 (JKF) increased ERalpha mRNA (100-200%) but decreased ERbeta mRNA (30-40%) expression as measured by real time PCR. ERalpha protein expression assessed by Western blot analysis increased (25-50%) in parallel, whereas ERbeta protein expression declines (25-55%). Using ovalbumin bound to E2 (Ov-E2) linked to Eu (Eu-Ov-E2), to assess specific membrane binding sites, we observed that membranal binding was down regulated by JKF by 70-80%. In contrast, total cell binding of 3[H] E2, that nearly entirely represents intracellular E2 binding, was increased by 60-100% by the same Vitamin D analog. The results provide evidence that the effects of JKF on ERalpha/ERbeta as well as on membranal versus nuclear binding of estrogen are divergent and show differential modulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号