首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  国内免费   1篇
  2018年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2005年   3篇
  2004年   2篇
  2001年   1篇
  2000年   2篇
  1986年   1篇
  1980年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
The scrotal myocutaneous flap   总被引:2,自引:0,他引:2  
The scrotum is a thermoregulatory, well-vascularized structure formed by skin and nonstriated muscle with unique elastic properties. This makes it an ideal source of tissue coverage for problem wounds in its vicinity. Two patients in which scrotal musculocutaneous flaps were used are reported: one, a paraplegic, with a recurrent ischioperineal decubitus ulcer, and another with an ulcer of the penis with exposed Dacron graft previously placed to treat Peyronie's disease. After reviewing the anatomy of the scrotum and the existent literature, we studied scrotal vascularity in a fresh specimen by transillumination. Based on our experience, we conclude that this flap is easy to perform, reliable, and very useful for wounds around the perineal region.  相似文献   
2.
葡萄糖及脂肪酸是胰岛β细胞的关键代谢底物,葡萄糖刺激胰岛β细胞分泌胰岛素是维持机体血糖稳态平衡的关键。胰岛素抵抗发生时,β细胞对能量代谢底物的选择失调,加速胰岛β细胞由代偿到胰岛β细胞失代偿的进程,是肥胖胰岛素抵抗最终发展为2型糖尿病的始动因素。核转录因子FoxO1属于Fox家族成员,在胰腺内广泛表达,在β细胞的代谢,发育,增殖过程中发挥着重要的调节作用。鉴于FoxO1在维持胰岛β细胞功能中的关键作用,现着重对FoxO1在胰岛β细胞代谢灵活性受损及失代偿过程发生中的作用调节进行阐述。为其作为调控胰岛β细胞功能的关键靶点提供参考。  相似文献   
3.
Theiler's murine encephalomyelitis virus (TMEV) infection of the brain induces a virus-specific CD8(+) T-cell response in genetically resistant mice. The peak of the immune response to the virus occurs 7 days after infection, with an immunodominant CD8(+) T-cell response against a VP2-derived capsid peptide in the context of the D(b) molecule. The process of activation of antigen-specific T cells that migrate to the brain in the TMEV model has not been defined. The site of antigenic challenge in the TMEV model is directly into the brain parenchyma, a site that is considered immune privileged. We investigated the hypothesis that antiviral CD8(+) T-cell responses are initiated in situ upon intracranial inoculation with TMEV. To determine whether a brain parenchymal antigen-presenting cell is responsible for the activation of virus-specific CD8(+) T cells, we evaluated the CD8(+) T-cell response to the VP2 peptide in bone marrow chimeras and mutant mice lacking peripheral lymphoid organs. The generation of the anti-TMEV CD8(+) T-cell response in the brain requires priming by a bone marrow-derived antigen-presenting cell and the presence of peripheral lymphoid organs. Although our results show that activation of TMEV-specific CD8(+) T cells occurs in the peripheral lymphoid compartment, they do not exclude the possibility that the immune response to TMEV is initiated by a brain-resident, bone marrow-derived, antigen-presenting cell.  相似文献   
4.
Natural selection drives diversification of MHC class I proteins, but the mechanism by which selection for polymorphism occurs is not known. New variant class I alleles differ from parental alleles both in the nature of the CD8 T cell repertoire formed and the ability to present pathogen-derived peptides. In the current study, we examined whether T cell repertoire differences, Ag presentation differences, or both account for differential viral resistance between mice bearing variant and parental alleles. We demonstrate that nonresponsive mice have inadequate presentation of viral Ag, but have T cell repertoires capable of mounting Ag-specific responses. Although previous work suggests a correlation between the ability to present an Ag and the ability to generate a repertoire responsive to that Ag, we show that the two functions of MHC class I are independent.  相似文献   
5.
The induction of sterilizing T-cell responses to tumors is a major goal in the development of T-cell vaccines for treating cancer. Although specific components of anti-viral CD8+ immunity are well characterized, we still lack the ability to mimic viral CD8+ T-cell responses in therapeutic settings for treating cancers. Infection with the picornavirus Theiler's murine encephalomyelitis virus (TMEV) induces a strong sterilizing CD8+ T-cell response. In the absence of sterilizing immunity, the virus causes a persistent infection. We capitalized on the ability of TMEV to induce strong cellular immunity even under conditions of immune deficiency by modifying the virus to evaluate its potential as a T-cell vaccine. The introduction of defined CD8+ T-cell epitopes into the leader sequence of the TMEV genome generates an attenuated vaccine strain that can efficiently drive CD8+ T-cell responses to the targeted antigen. This virus activates T-cells in a manner that is capable of inducing targeted tissue damage and glucose dysregulation in an adoptive T-cell transfer model of diabetes mellitus. As a therapeutic vaccine for the treatment of established melanoma, epitope-modified TMEV can induce strong cytotoxic T-cell responses and promote infiltration of the T-cells into established tumors, ultimately leading to a delay in tumor growth and improved survival of vaccinated animals. We propose that epitope-modified TMEV is an excellent candidate for further development as a human T-cell vaccine for use in immunotherapy.  相似文献   
6.
目的:研究Buserelin原料药的性质在温度、湿度、光线等条件的影响下随时间变化的规律,为该原料药的生产、包装、储存、运输及有效期的制定提供依据。方法:根据中国药典2005版二部附录XIX C药物稳定性试验指导原则及化学药物稳定性研究技术指导原则进行强光照射、高温(60℃、40℃)、高湿(RH92.5%±5%、RH75%±5%)影响因素试验,加速试验(40℃±2℃、RH75%±5%;25℃±2℃、RH60%±10%);按Buserelin原料药标准规定的质量指标及相关的检验方法对产品在试验条件下的主要质量指标进行检测。结果:强光照射、高温、高湿等影响因素对Buserelin的稳定性有明显影响,故应密封、于干燥、阴凉处保存。在加速试验中,Buserelin原料药的各项质量指标发生了小的变化,但均在质量标准规定的范围内。结论:强光照射、高温、高湿等影响因素对Buserelin的稳定性有明显影响,应在阴凉干燥处避光密封保存和运输。加速试验结果证明:在此条件下,它的各项质量指标变化均在质量标准范围内,符合Buserelin原料药质量标准规定的要求;故将其保质期暂定为两年。  相似文献   
7.
Structural diversity in the peptide binding sites of the redundant classical MHC antigen presenting molecules is strongly selected in humans and mice. Although the encoded antigen presenting molecules overlap in antigen presenting function, differences in polymorphism at the MHC I A, B and C loci in humans and higher primates indicate these loci are not functionally equivalent. The structural basis of these differences is not known. We hypothesize that classical class I loci differ in their ability to direct effective immunity against intracellular pathogens. Using a picornavirus infection model and chimeric H-2 transgenes, we examined locus specific functional determinants distinguishing the ability of class I sister genes to direct effective anti viral immunity. Whereas, parental FVB and transgenic FVB mice expressing the H-2Kb gene are highly susceptible to persisting Theiler''s virus infection within the CNS and subsequent demyelination, mice expressing the Db transgene clear the virus and are protected from demyelination. Remarkably, animals expressing a chimeric transgene, comprised primarily of Kb but encoding the peptide binding domain of Db, develop a robust anti viral CTL response yet fail to clear virus and develop significant demyelination. Differences in expression of the chimeric Kbα1α2Db gene (low) and Db (high) in the CNS of infected mice mirror expression levels of their endogenous H-2q counterparts in FVB mice. These findings demonstrate that locus specific elements other than those specifying peptide binding and T cell receptor interaction can determine ability to clear virus infection. This finding provides a basis for understanding locus-specific differences in MHC polymorphism, characterized best in human populations.  相似文献   
8.
9.
In a study published recently in Arthritis Research & Therapy, Woo and colleagues investigated the effects of pravastatin in combination with an apolipoprotein-AI (Apo-AI) mimetic peptide in a mouse model of lupus-accelerated atherosclerosis. Combination treatment resulted in a significant decrease in systemic inflammation but increased aortic root lesion size. However, this treatment changed the phenotype of the lesion to a more stable plaque. Because plaque stability is also important for protection against the deadly manifestations of atherosclerosis, combination therapies using Apo-AI mimetics and statin might offer a good additional therapy to treat autoimmunity and cardiovascular disease in patients with lupus.  相似文献   
10.
Both CD8 and the TCR bind to MHC class I molecules during physiologic T cell activation. It has been shown that for optimal T cell activation to occur, CD8 must be able to bind the same class I molecule that is bound by the TCR. However, no direct evidence for the class I-dependent association of CD8 and the TCR has been demonstrated. Using fluorescence resonance energy transfer, we show directly that a single class I molecule causes TCR/CD8 interaction by serving as a docking molecule for both CD8 and the TCR. Furthermore, we show that CD3epsilon is brought into close proximity with CD8 upon TCR/CD8 association. These interactions are not dependent on the phosphorylation events characteristic of T cell activation. Thus, MHC class I molecules, by binding to both CD8 and the TCR, mediate the reorganization of T cell membrane components to promote cellular activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号