首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  17篇
  2019年   1篇
  2017年   1篇
  2013年   3篇
  2008年   1篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Biomechanics and Modeling in Mechanobiology - The aim of this study was to qualitatively evaluate the biomechanical load resistance of different surgical wound configurations (mushroom, zig-zag,...  相似文献   
2.
Reaction of the acyl chlorides of phthalimido-glycine or phthalimido-beta-alanine with 5-amino-1,3,4-thiadiazole-2-sulfonamide afforded after hydrazinolysis and deprotection of the phthalimido group the corresponding 5-(omega-aminoalkylcarboxamido)-1,3,4-thiadiazole-2-sulfonamides. Reaction of 5-(beta-aminoethylcarboxamido)-1,3,4-thiadiazole-2-sulfonamide with sulfonyl halides or acyl halides afforded a series of compounds possessing beta-alkyl/arylsulfonyl/carbonylamidoethylcarboxamido moieties in the 5 position of the thiadiazole-2-sulfonamide ring. The new derivatives were efficient inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II (cytosolic forms) and IV (membrane-bound form), but especially against CA II and CA IV (in nanomolar range), the two isozymes known to play an important role in aqueous humor secretion within the ciliary processes of the eye. Some of the synthesized inhibitors possessed good water solubility (as hydrochlorides or sodium salts) and were applied as 2% solutions directly into the eye of normotensive or glaucomatous albino rabbits. Very strong intraocular pressure (IOP) lowering was observed for many of them for prolonged periods of 1-2 h, and the active drug was detected in eye tissues and fluids indicating that the antiglaucoma effect is due to CA inhibition within the eye.  相似文献   
3.
Metal complexes of a sulfonamide possessing strong carbonic anhydrase (CA) inhibitory properties, 5-(2-chlorophenyl)-1,3,4-thiadiazole-2-sulfonamide (chlorazolamide) have been obtained from the sodium salt of the sulfonamide and the following metal ions: Mg(II), Zn(II), Mn(II), Cu(II), Co(II), Ni(II), Be(II), Cd(II), Pb(II), Al(III), Fe(III) and La(III). The original sulfonamide and its complexes were assayed for the in vitro inhibition of three CA isozymes, CA I, II, and IV, some of which play a critical role in ocular fluid secretion. All these compounds (the sulfonamide and its metal complexes) behaved as powerful inhibitors against the three investigated isozymes. The parent sulfonamide possessed an extremely weak topical pressure lowering effect when administered as a 1-2% suspension into the rabbit eye, but some of its metal complexes, such as the Mg(II), Zn(II), Mn(II) and Cu(II) derivatives, lower intraocular pressure (IOP) in experimental animals very well. Ex vivo data showed a 99.5-99.9% CA II inhibition in ocular fluids and tissues of rabbits treated with these agents, proving that the observed IOP lowering is due to CA inhibition. The influence of the different metal ions upon the efficiency of the obtained complexes as pressure lowering drugs are discussed, leading to the possibility of designing more selective/potent pharmacological agents from this class.  相似文献   
4.
Important physiological and physio-pathological functions are played by several carbonic anhydrase (CA, EC 4.2.1.1) isozymes, which are strongly inhibited by aromatic and heterocyclic sulfonamides. Here we report several new types of such sulfonamides, incorporating furan-, thiophene- and pyrrole-carboxamide moieties in their molecules. Some of these compounds showed very good CA II and CA IV inhibitory properties. with affinities for the enzymes in the low nanomolar range. Due to their relatively low water solubility, some of the most active CA II inhibitors reported here have been formulated as aqueous suspension for topical administration as antiglaucoma agents. in normotensive and glaucomatous rabbits. The derivatives incorporating furan- and pyrrole-carboxamide moieties (but not the corresponding thiophene-substituted derivatives), showed effective and long-lasting intraocular pressure (IOP) lowering both in normotensive as well as glaucomatous animals, with potencies superior to dorzolamide and brinzolamide, the two available topically acting sulfonamide drugs. This is the first example of non-water soluble sulfonamides that significantly lower IOP, being thus similar with the recently introduced drug brinzolamide, which belongs to a completely different chemical family of antiglaucoma sulfonamides.  相似文献   
5.
Reaction of 3- and 4-carboxybenzenesulfonyl chloride with 5-amino-1,3,4-thiadiazole-2-sulfonamide/5-imino-4-methyl-delta(2)-1,3,4-thiadiazoline-2-sulfonamide afforded two series of benzolamide analogues to which the carboxyl moiety has been derivatized as esters or amides, in order to reduce their very polar character. The new derivatives showed low nanomolar affinity for three carbonic anhydrase (CA) isozymes, CA I, II and IV, and were effective as topical antiglaucoma agents in normotensive rabbits. Efficacy of several of the new sulfonamides reported was better than that of the standard drugs dorzolamide and brinzolamide, whereas their duration of action was prolonged as compared to that of the clinically used drugs.  相似文献   
6.
Reaction of 4-(2-amino-pyrimidin-4-yl-amino)-benzenesulfonamide with alkyl/aryl-sulfonyl halides, acyl halides or arysulfonyl isocyanates afforded a series of derivatives which were tested for inhibition of three carbonic anhydrase (CA) isozymes. These compounds were designed in such a way as to (i) strongly inhibit several CA isozymes involved in aqueous humor secretion within the eye (such as CA II and CA IV), and (ii) to possess a pharmacological profile that allows easy penetration through the cornea, when administered as eye drops in solution or suspension, constituting thus a valuable therapeutic approach for glaucoma. Several of the obtained inhibitors showed low nanomolar affinities for the two isozymes involved in aqueous humor secretion, CA II and CA IV. Furthermore, in normotensive and hypertensive rabbits, some of them showed an effective and prolonged intraocular pressure (IOP) lowering when administered topically, as 2% suspensions/solutions.  相似文献   
7.
Sulfonamides incorporating cis-5-norbornene-endo-3-carboxy-2-carboxamido moieties in their molecules were prepared by reaction of cis-5-norbornene-endo-2,3-dicarboxylic anhydride with aromatic/heterocyclic sulfonamides possessing free amino, hydrazino, or imino groups. Some of these compounds showed very good CA II and CA IV inhibitory properties, with affinities for the enzymes in the low nanomolar range. Some of the most active CA II inhibitors reported here have been formulated as aqueous solutions for topical administration as antiglaucoma agents in normotensive rabbits. Some of the derivatives incorporating cis-5-norbornene-endo-3-carboxy-2-carboxamido and aromatic sulfonamide moieties (as sodium salts) showed effective and longer lasting intraocular pressure (IOP) lowering as compared to dorzolamide, a widely used topical antiglaucoma drug. Compounds incorporating cis-5-norbornene-endo-2,3-carboximido moieties, although stronger in vitro CA inhibitors as compared to the corresponding cis-5-norbornene-endo-3-carboxy-2-carboxamido-;derivatives, showed no topical IOP lowering properties, probably due to their very poor water solubility.  相似文献   
8.
Reaction of thiophosgene with 4-aminomethyl-benzenesulfonamide afforded 4-isothiocyanatomethyl-benzenesulfonamide, which by reaction with amines, amino acids and oligopeptides, lead to a series of new sulfonamides incorporating a 4-sulfamoylphenylmethylthiourea scaffold. These new thioureas showed strong affinities towards isozymes I, II and IV of carbonic anhydrase (CA, EC 4.2.1.1). In vitro inhibitory potency was good (in the low nanomolar range) for the derivatives of: amino-benzoic acids, beta-phenyl-serine, alpha-phenyl-glycine, for those incorporating hydroxy- and mercapto-amino acids (Ser, Thr, Cys and Met), hydrophobic amino acids (Val, Leu, Ile), aromatic amino acids (Phe, His, Trp, Tyr; DOPA); dicarboxylic amino acids as well as di-/tri-/tetrapeptides among others. Such CA inhibitors displayed very good water solubility (in the range of 2-3%) as sodium (carboxylate) salts, with pH values for the solutions obtained of 6.5-7.0. Furthermore, in normotensive rabbits, some of them showed an effective and prolonged intraocular pressure (IOP) lowering when administered topically, as 2% solutions.  相似文献   
9.
Reaction of diethylenetriamino pentaacetic acid (dtpa) dianhydride with aromatic/heterocyclic sulfonamides possessing a free amino/imino/hydrazino/hydroxy group afforded bis-sulfonamides containing metal-complexing, polyamino-polycarboxylic acid moieties in their molecule. The corresponding mono-sulfonamide derivatives of dtpa were also obtained by an alternative method, from the free acid. Zn(II) complexes of these new sulfonamides were then prepared. Many of these derivatives showed nanomolar affinity towards isozymes I, II and IV of carbonic anhydrase (CA). Some of the best inhibitors were applied as 2% water solutions/suspensions into the eye of normotensive or glaucomatous albino rabbits, when strong and long-lasting intraocular pressure (IOP) lowering was observed.  相似文献   
10.
Metal complexes of a sulfonamide possessing strong carbonic anhydrase (CA) inhibitory properties, 5-(2-chlorophenyl)-1, 3, 4-thiadiazole-2-sulfonamide (chlorazolamide) have been obtained from the sodium salt of the sulfonamide and the following metal ions: Mg(II), Zn(II), Mn(II), Cu(II), Co(II), Ni(II), Be(II), Cd(II), Pb(II), AI(III), Fe(III) and La(III). The original sulfonamide and its complexes were assayed for the in vitro inhibition of three CA isozymes, CA I, II, and IV, some of which play a critical role in ocular fluid secretion. All these compounds (the sulfonamide and its metal complexes) behaved as powerful inhibitors against the three investigated isozymes. The parent sulfonamide possessed an extremely weak topical pressure lowering effect when administered as a 1-2% suspension into the rabbit eye, but some of its metal complexes, such as the Mg(II), Zn(II), Mn(II) and Cu(II) derivatives, lower intraocular pressure (IOP) in experimental animals very well. Ex vivo data showed a 99.5-99.9% CA II inhibition in ocular fluids and tissues of rabbits treated with these agents, proving that the observed IOP lowering is due to CA inhibition. The influence of the different metal ions upon the efficiency of the obtained complexes as pressure lowering drugs are discussed, leading to the possibility of designing more selective; potent pharmacological agents from this class  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号