首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   8篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   6篇
  2012年   1篇
  2011年   3篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  1999年   2篇
  1997年   1篇
  1987年   1篇
  1985年   1篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
1.
Interventions are needed to protect the health of children who live with smokers. We pilot-tested a real-time intervention for promoting behavior change in homes that reduces second hand tobacco smoke (SHS) levels. The intervention uses a monitor and feedback system to provide immediate auditory and visual signals triggered at defined thresholds of fine particle concentration. Dynamic graphs of real-time particle levels are also shown on a computer screen. We experimentally evaluated the system, field-tested it in homes with smokers, and conducted focus groups to obtain general opinions. Laboratory tests of the monitor demonstrated SHS sensitivity, stability, precision equivalent to at least 1 µg/m3, and low noise. A linear relationship (R2 = 0.98) was observed between the monitor and average SHS mass concentrations up to 150 µg/m3. Focus groups and interviews with intervention participants showed in-home use to be acceptable and feasible. The intervention was evaluated in 3 homes with combined baseline and intervention periods lasting 9 to 15 full days. Two families modified their behavior by opening windows or doors, smoking outdoors, or smoking less. We observed evidence of lower SHS levels in these homes. The remaining household voiced reluctance to changing their smoking activity and did not exhibit lower SHS levels in main smoking areas or clear behavior change; however, family members expressed receptivity to smoking outdoors. This study established the feasibility of the real-time intervention, laying the groundwork for controlled trials with larger sample sizes. Visual and auditory cues may prompt family members to take immediate action to reduce SHS levels. Dynamic graphs of SHS levels may help families make decisions about specific mitigation approaches.  相似文献   
2.
Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade‐off possibilities. The competition‐defence hypothesis posits a trade‐off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth‐defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth‐defence trade‐off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life‐history groups and within the majority of individual sites. Thus, a growth‐defence trade‐off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.  相似文献   
3.
We summarise the contributions of empiricists, modellers, and practitioners in this issue of Biodiversity and Conservation, and highlight the most important areas for future research on species survival in fragmented landscapes. Under the theme uncertainty in research and management, we highlight five areas for future research. First, we know little about the effects of density dependence on the viability of metapopulations, a requirement for fragmented landscapes. Second, successful early attempts suggest that it is worth developing more rigorous calibration methods for population viability analysis with spatially explicit, individual-based models. In particular, the balance between model complexity, ease of calibration, and precision, needs to be addressed. Third, we need to improve methods to discriminate between models, including alternatives to time-series approaches. Fourth, when our ability to reduce model uncertainty is weak, we need to incorporate this uncertainty in population viability analysis. Fifth, population viability analysis and decision analysis can be integrated to make uncertainty an explicit part of the decision process. An important future direction is extending the decision framework to adaptive management. Under the theme tools for quantifying risk and predicting species sensitivity to fragmentation, we highlight three areas for future research. First, we need to develop tools to support comparative approaches to population viability analysis. Second, population modelling can be used to find rules of thumb to support conservation decisions when very little is known about a species. Rules of thumb need to be extended to the problem of managing for multiple species. Third, species traits might be useful for predicting sensitivity but predictions could be further refined by considering the relative importance of population processes at different scales. Under the theme tools for reassembling fragmented landscapes, we consider the focal species approach, and highlight aspects of the approach that require more rigorous testing. Finally, we highlight two important areas for future research not presented in the previous themes or papers in this volume. First, we need to incorporate the deterministic effects of habitat modification into the modelling framework of population viability analysis. Second, an avenue of research that remains largely unexplored is the combination of landscape-scale experiments and population modelling, especially using data from existing fragmentation experiments and from experiments designed to test the effects of defragmenting landscapes.  相似文献   
4.
Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.  相似文献   
5.
Associating phenotypic traits and quantitative trait loci (QTL) to causative regions of the underlying genome is a key goal in agricultural research.InterStoreDB is a suite of integrated databases designed to assist in this process.The individual databases are species independent and generic in design,providing access to curated datasets relating to plant populations,phenotypic traits,genetic maps,marker loci and QTL,with links to functional gene annotation and genomic sequence data.Each component database provides access to associated metadata,including data provenance and parameters used in analyses,thus providing users with information to evaluate the relative worth of any associations identified.The databases include CropStoreDB,for management of population,genetic map,QTL and trait measurement data,SeqStoreDB for sequence-related data and AlignStoreDB,which stores sequence alignment information,and allows navigation between genetic and genomic datasets.Genetic maps are visualized and compared using the CMAP tool,and functional annotation from sequenced genomes is provided via an EnsEMBL-based genome browser.This framework facilitates navigation of the multiple biological domains involved in genetics and genomics research in a transparent manner within a single portal.We demonstrate the value of InterStoreDB as a tool for Brassica research.InterStoreDB is available from:http://www.interstoredb.org  相似文献   
6.
7.
8.
Habitat fragmentation can alter the trophic structure of communities and environmental conditions, thus driving changes in biodiversity and ecosystem functions. Quantifying niches of generalist predators can reveal how fragmentation alters ecosystems. In a habitat fragmentation experiment, we used stable isotopes of a generalist predator skink to test predictions from spatial theory on trophic structure and to quantify abiotic changes associated with fragmentation among continuous forest, fragments, and matrix habitats. We predicted that in fragments and the matrix, isotopic niches would shift due to decreases in skink trophic positions (δ15N) from reductions in trophic structure of arthropod food webs and abiotic changes over time (δ13C) relative to continuous forest. Contrary to theoretical predictions, we did not find evidence of reductions in trophic structure with fragmentation. In fact, skink δ15N values were higher in the matrix and fragments than continuous forest, likely due to changes in distributions of a detritivorous prey species. In addition, δ13C values in the matrix decreased over years since fragmentation due to abiotic changes associated with matrix tree maturation. We show how isotopic niches are influenced by fragmentation via shifts in biotic and abiotic processes. The potential for either or both spatial and abiotic effects of fragmentation present a challenge for theory to better predict ecological changes in fragmented landscapes.  相似文献   
9.
Factors affecting the early life history of yellow perch,Perca flavescens   总被引:2,自引:0,他引:2  
Synopsis From 1979 to 1981 we followed the movement, diet, and growth of yellow perch,Perca flavescens, for their first 70 days after hatching in Lake Itasca, Minnesota. Perch spawned inshore during early spring; hatching occurred 10–20 days after spawning. Newly hatched perch were 5.6–6.2 mm total length (TL). Soon after hatching the larvae moved into the limnetic zone where they began feeding. This movement is probably a mechanism to escape intense predation in the littoral zone. Normally the first food of perch was immature copepods, but within a week they incorporated all common zooplankters into their diet. When the perch reached 25 mm TL (about day 40) they returned to the littoral zone, where they ate larger and more abundant prey than was present in the limnetic habitat. There is no correlation between growth rates and zooplankton abundances, which suggests that food quantity is not a limiting factor in the early life history of perch in Lake Itasca.  相似文献   
10.
As a consequence of global climate‐driven changes, marine ecosystems are experiencing polewards redistributions of species – or range shifts – across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south‐eastern Australia, a global hotspot for ocean warming. We identify range‐shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole‐of‐ecosystem management strategies and regular monitoring of range‐shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range‐shifting species can predict ecological consequences of multiple co‐occurring range shifts, guide ecosystem‐based adaptation to climate change and help prioritise future research and monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号