首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3601篇
  免费   347篇
  国内免费   1篇
  2024年   5篇
  2023年   11篇
  2022年   57篇
  2021年   83篇
  2020年   54篇
  2019年   47篇
  2018年   86篇
  2017年   80篇
  2016年   126篇
  2015年   228篇
  2014年   227篇
  2013年   264篇
  2012年   320篇
  2011年   348篇
  2010年   219篇
  2009年   181篇
  2008年   259篇
  2007年   265篇
  2006年   234篇
  2005年   167篇
  2004年   160篇
  2003年   161篇
  2002年   138篇
  2001年   22篇
  2000年   12篇
  1999年   28篇
  1998年   26篇
  1997年   16篇
  1996年   9篇
  1995年   12篇
  1994年   8篇
  1993年   9篇
  1992年   13篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   8篇
  1981年   3篇
  1980年   7篇
  1972年   2篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1938年   1篇
排序方式: 共有3949条查询结果,搜索用时 0 毫秒
1.
Connexin 43 (Cx43) is the most abundant gap junction protein in bone and is required for osteoblastic differentiation and bone homeostasis. During fracture healing, Cx43 is abundantly expressed in osteoblasts and osteocytes, while Cx43 deficiency impairs bone formation and healing. In the present study we selectively deleted Cx43 in the osteoblastic lineage from immature osteoblasts through osteocytes and tested the hypothesis that Cx43 deficiency results in delayed osteoblastic differentiation and impaired restoration of biomechanical properties due to attenuated β-catenin expression relative to wild type littermates. Here we show that Cx43 deficiency results in alterations in the mineralization and remodeling phases of healing. In Cx43 deficient fractures the mineralization phase is marked by delayed expression of osteogenic genes. Additionally, the decrease in the RankL/ Opg ratio, osteoclast number and osteoclast size suggest decreased osteoclast bone resorption and remodeling. These changes in healing result in functional deficits as shown by a decrease in ultimate torque at failure. Consistent with these impairments in healing, β-catenin expression is attenuated in Cx43 deficient fractures at 14 and 21 days, while Sclerostin (Sost) expression, a negative regulator of bone formation is increased in Cx43cKO fractures at 21 days, as is GSK-3β, a key component of the β-catenin proteasomal degradation complex. Furthermore, we show that alterations in healing in Cx43 deficient fractures can be rescued by inhibiting GSK-3β activity using Lithium Chloride (LiCl). Treatment of Cx43 deficient mice with LiCl restores both normal bone formation and mechanical properties relative to LiCl treated WT fractures. This study suggests that Cx43 is a potential therapeutic target to enhance fracture healing and identifies a previously unknown role for Cx43 in regulating β-catenin expression and thus bone formation during fracture repair.  相似文献   
2.
3.
The precise regulation of synapse maintenance is critical to the development and function of neuronal circuits. Using an in vivo RNAi screen targeting the Drosophila kinome and phosphatome, we identify 11 kinases and phosphatases controlling synapse stability by regulating cytoskeletal, phospholipid, or metabolic signaling. We focus on casein kinase 2 (CK2) and demonstrate that the regulatory (β) and catalytic (α) subunits of CK2 are essential for synapse maintenance. CK2α kinase activity is required in the presynaptic motoneuron, and its interaction with CK2β, mediated cooperatively by two N-terminal residues of CK2α, is essential for CK2 holoenzyme complex stability and function in vivo. Using genetic and biochemical approaches we identify Ankyrin2 as a key presynaptic target of CK2 to maintain synapse stability. In addition, CK2 activity controls the subcellular organization of individual synaptic release sites within the presynaptic nerve terminal. Our study identifies phosphorylation of structural synaptic components as a compelling mechanism to actively control the development and longevity of synaptic connections.  相似文献   
4.
5.
6.
We investigated the interacting proteins and intracellular localization of CTP synthetase 1 (CTPS1) in mammalian cells. CTPS1 interacted with a GST- peptidyl prolyl isomerase, Pin1 fusion (GST-Pin1) in a Ser 575 (S575) phosphorylation-dependent manner. Immunoprecipitation experiments demonstrated that CTPS1 also bound tubulin, and thirteen additional coimmunoprecipitating proteins were identified by mass spectrometry. Immunolocalization experiments showed that tubulin and CTPS1 colocalized subcellularly. Taxol treatment enhanced this but cotreatment of cells with the CTPS inhibitor, cyclopentenyl cytosine (CPEC), and taxol failed to disrupt the colocalization. Thus, these studies provide novel information on the potential interacting proteins that may regulate CTPS1 function or intracellular localization.  相似文献   
7.
Aim Species capable of vigorous growth under a wide range of environmental conditions should have a higher chance of becoming invasive after introduction into new regions. High performance across environments can be achieved either by constitutively expressed traits that allow for high resource uptake under different environmental conditions or by adaptive plasticity of traits. Here we test whether invasive and non‐invasive species differ in presumably adaptive plasticity. Location Europe (for native species); the rest of the world and North America in particular (for alien species). Methods We selected 14 congeneric pairs of European herbaceous species that have all been introduced elsewhere. One species of each pair is highly invasive elsewhere in the world, particularly so in North America, whereas the other species has not become invasive or has spread only to a limited degree. We grew native plant material of the 28 species under shaded and non‐shaded conditions in a common garden experiment, and measured biomass production and morphological traits that are frequently related to shade tolerance and avoidance. Results Invasive species had higher shoot–root ratios, tended to have longer leaf‐blades, and produced more biomass than congeneric non‐invasive species both under shaded and non‐shaded conditions. Plants responded to shading by increasing shoot–root ratios and specific leaf area. Surprisingly, these shade‐induced responses, which are widely considered to be adaptive, did not differ between invasive and non‐invasive species. Main conclusions We conclude that high biomass production across different light environments pre‐adapts species to become invasive, and that this is not mediated by plasticities of the morphological traits that we measured.  相似文献   
8.
9.
Summary The human homologue of the fission yeast Schizosaccharomyces pombe cell cycle control gene cdc2 has been assigned to chromosome 10. DNA hybridization reveals that this gene is highly conserved in vertebrates. The human CDC2 gene probe detects a simple two-allele polymorphism in Taq1-digested DNA.  相似文献   
10.
Summary The functional integrity of the QUTB gene (encoding quinate dehydrogenase) has been confirmed by transformation of a qutB mutant strain. The DNA sequence of the contiguous genes QUTD (quinate permease), QUTB and QUTG (function unknown) has been determined and analysed, together with that of QUTE (catabolic 3-dehydroquinase). The QUTB sequence shows significant homology with the shikimate dehydrogenase function of the complex AROM locus of Aspergillus nidulans, and with the QA-3 quinate dehydrogenase and QA-1S (repressor) genes of Neurospora crassa. The QUTD gene shows strong homology with the N. crassa QA-Y gene and QUTG with the QA-X gene. QUTD, QUTB, and QUTG, QUTE form two pairs of divergently transcribed genes, and conserved sequence motifs identified in the two common 5 non-coding regions show significant homology with UAS GAL and UAS QA sequences of the Saccharomyces cerevisiae and N. crassa Gal and QA systems. In addition, conserved 5 sequences homologous to the mammalian CAAT box are noted and a previously unreported conserved 22 nucleotide motif is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号