首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3687篇
  免费   347篇
  国内免费   1篇
  2024年   5篇
  2023年   11篇
  2022年   53篇
  2021年   80篇
  2020年   53篇
  2019年   45篇
  2018年   83篇
  2017年   80篇
  2016年   128篇
  2015年   226篇
  2014年   229篇
  2013年   258篇
  2012年   322篇
  2011年   343篇
  2010年   220篇
  2009年   181篇
  2008年   254篇
  2007年   259篇
  2006年   237篇
  2005年   167篇
  2004年   157篇
  2003年   161篇
  2002年   140篇
  2001年   28篇
  2000年   18篇
  1999年   32篇
  1998年   29篇
  1997年   16篇
  1996年   11篇
  1995年   11篇
  1994年   9篇
  1993年   10篇
  1992年   16篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   7篇
  1987年   8篇
  1986年   6篇
  1985年   10篇
  1984年   8篇
  1983年   5篇
  1982年   10篇
  1980年   12篇
  1979年   5篇
  1978年   9篇
  1977年   6篇
  1972年   5篇
  1971年   8篇
  1970年   11篇
排序方式: 共有4035条查询结果,搜索用时 281 毫秒
1.
2.
The precise regulation of synapse maintenance is critical to the development and function of neuronal circuits. Using an in vivo RNAi screen targeting the Drosophila kinome and phosphatome, we identify 11 kinases and phosphatases controlling synapse stability by regulating cytoskeletal, phospholipid, or metabolic signaling. We focus on casein kinase 2 (CK2) and demonstrate that the regulatory (β) and catalytic (α) subunits of CK2 are essential for synapse maintenance. CK2α kinase activity is required in the presynaptic motoneuron, and its interaction with CK2β, mediated cooperatively by two N-terminal residues of CK2α, is essential for CK2 holoenzyme complex stability and function in vivo. Using genetic and biochemical approaches we identify Ankyrin2 as a key presynaptic target of CK2 to maintain synapse stability. In addition, CK2 activity controls the subcellular organization of individual synaptic release sites within the presynaptic nerve terminal. Our study identifies phosphorylation of structural synaptic components as a compelling mechanism to actively control the development and longevity of synaptic connections.  相似文献   
3.
4.
5.
Aim Species capable of vigorous growth under a wide range of environmental conditions should have a higher chance of becoming invasive after introduction into new regions. High performance across environments can be achieved either by constitutively expressed traits that allow for high resource uptake under different environmental conditions or by adaptive plasticity of traits. Here we test whether invasive and non‐invasive species differ in presumably adaptive plasticity. Location Europe (for native species); the rest of the world and North America in particular (for alien species). Methods We selected 14 congeneric pairs of European herbaceous species that have all been introduced elsewhere. One species of each pair is highly invasive elsewhere in the world, particularly so in North America, whereas the other species has not become invasive or has spread only to a limited degree. We grew native plant material of the 28 species under shaded and non‐shaded conditions in a common garden experiment, and measured biomass production and morphological traits that are frequently related to shade tolerance and avoidance. Results Invasive species had higher shoot–root ratios, tended to have longer leaf‐blades, and produced more biomass than congeneric non‐invasive species both under shaded and non‐shaded conditions. Plants responded to shading by increasing shoot–root ratios and specific leaf area. Surprisingly, these shade‐induced responses, which are widely considered to be adaptive, did not differ between invasive and non‐invasive species. Main conclusions We conclude that high biomass production across different light environments pre‐adapts species to become invasive, and that this is not mediated by plasticities of the morphological traits that we measured.  相似文献   
6.
The nucleotide binding center of the uncoupling protein from brown adipose tissue (UCP) was probed by photoaffinity labeling with 8-azido-ATP. The isolated dimeric UCP in non-ionic detergent was used. 8-azido-ATP binds to UCP with a Kd = 3 microM, i.e. with an only threefold lower affinity than ATP and a maximum number of binding sites of about 12 mumol/g protein corresponding to about 1 mol/mol dimer UCP. UCP is rapidly degraded by ultraviolet radiation, and therefore only near ultraviolet and visible light can be used for photoaffinity labeling. The total covalent incorporation is shown to be dependent on the concentration of azido-ATP and on competing phospholipids. The specific, i.e. ATP-sensitive incorporation only to the binding site depends on the presence of cysteine. With CNBr cleavage the 8-azido-[gamma-32P]ATP insertion within the primary structure was located by identifying ATP-sensitive labeled peptides in SDS/PAGE. A major specific 8-azido-ATP incorporation was found by autoradiography in the smallest CNBr fragments. Identification of the radioactive peptides was difficult since 8-azido-ATP insertion causes a distinct shift in the gels from the stained peptides. Identification was possible by specific disulfide formation at the C-terminal within the UCP dimer which only removed the CB7 (CB, CNBr fragment) portion of the low-molecular-mass peptides but did not move the radioactive band. This excludes the C-terminal CB7 and identifies the labeled peptide as CB6. Also, limited tryptic cleavage of intact UCP at Lys293 did not remove the radioactivity. Cleavage of tryptophanes support localization of 8-azido-ATP between residues 173-280 which includes CB6. Solid-phase sequencing of the labeled CB6 both after serine lactone and carboxyl coupling suggest incorporation into Thr260. These results indicate that the adenine-binding site is within the third domain of the tripartite UCP structure at a putative hydrophilic channel which can be assessed both from the cytosol and matrix of mitochondria.  相似文献   
7.
8.
Summary The human homologue of the fission yeast Schizosaccharomyces pombe cell cycle control gene cdc2 has been assigned to chromosome 10. DNA hybridization reveals that this gene is highly conserved in vertebrates. The human CDC2 gene probe detects a simple two-allele polymorphism in Taq1-digested DNA.  相似文献   
9.
Summary The functional integrity of the QUTB gene (encoding quinate dehydrogenase) has been confirmed by transformation of a qutB mutant strain. The DNA sequence of the contiguous genes QUTD (quinate permease), QUTB and QUTG (function unknown) has been determined and analysed, together with that of QUTE (catabolic 3-dehydroquinase). The QUTB sequence shows significant homology with the shikimate dehydrogenase function of the complex AROM locus of Aspergillus nidulans, and with the QA-3 quinate dehydrogenase and QA-1S (repressor) genes of Neurospora crassa. The QUTD gene shows strong homology with the N. crassa QA-Y gene and QUTG with the QA-X gene. QUTD, QUTB, and QUTG, QUTE form two pairs of divergently transcribed genes, and conserved sequence motifs identified in the two common 5 non-coding regions show significant homology with UAS GAL and UAS QA sequences of the Saccharomyces cerevisiae and N. crassa Gal and QA systems. In addition, conserved 5 sequences homologous to the mammalian CAAT box are noted and a previously unreported conserved 22 nucleotide motif is presented.  相似文献   
10.
We have found and characterized an antigen associated with crystal-containing cells in the stomium and connective tissue of the anthers of Nicotiana tabacum L. (tobacco). The antigen, defined by the monoclonal antibody NtF-8B1, localizes to subcellular regions surrounding the crystals. At the light-microscope level, the antigen is detectable just after the first appearance of crystals in the connective tissue of the anther, and at approximately the same time as the appearance of crystals in the stomium. The antigen is not detectable on a Western blot, and gave inconclusive results on a test of periodate sensitivity. It is not the crystals themselves, nor is the presence of the crystals required for antibody recognition. The antigen is sensitive to heat and protease treatment, indicating that it is a protein. The antigen is not tightly membrane-bound, in spite of its localization closely surrounding the crystals. Chemical tests indicate that the druse crystals in the stomium are calcium oxalate.Abbreviations ELISA enzyme-linked immunosorbent assay - FITC fluorescein isothiocyanate This research was supported by a National Science Foundation postdoctoral fellowship to B.L.H., by National Science Foundation grants DMB-87-15799 and to W.E.F. BSR-88-18035, and by U.S. Department of Agriculture grant GAM-89-01056. The authors thank Phillip T. Evans (Louisiana State University, Baton Rouge, USA), Wilma L. Lingle, Harry T. Horner, Jr. (Iowa State University), and A. Jack Fowler, Jr., for advice and helpful discussions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号