首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
  57篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   4篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
In Mono Lake (California), a large saline lake, chlorophyll concentrations in the euphotic zone increased from 4 to 45 µg l–1 between July and October 1979. These seasonal changes in chlorophyll are detectable on imagery obtained with the multispectral scanner on Landsat. Computer-compatible tapes of Landsat images were normalized for solar zenith and corrected for atmospheric scatter and absorption to obtain Landsat band 4 emittances (W m–2 str–1) of 13.4 ± 0.5 when chlorophyll was 4 µg l–1 and 4.6 ± 0.3 when chlorophyll was 45 µg l–1. Lake wide, spatial heterogeneity of chlorophyll of 2 µg l–1 in July and 8 µg l–1 in October was not detectable on the Landsat imagery.  相似文献   
2.
Zooplankton cohort analysis using systems identification techniques   总被引:1,自引:0,他引:1  
The linear-transfer and lag-Manly models of zooplankton cohortdevelopment were examined using data generated from a thirdmore realistic model. The more realistic multi-transfer modelincluded variance in development rate among individuals. Thelinear-transfer model produced highly biased estimates of developmentrate under conditions of rapidly changing recruitment. Althoughits performance was improved by increasing the number of modeledstages and thus decreasing the rate of change in recruitmentcompared to stage duration, a positive bias remained. The lag-Manlymodel also produced positively biased estimates of stage durationgiven non-zero variance in development rates. A comparison ofthe models' performances under different simulated samplingregimes recommended the multi-transfer model. Use of the multi-transfermodel was illustrated by determining the development and mortalityrates of the brine shrimp, Artemia monica reared under threedifferent conditions of food and temperature corresponding tonatural regimes in Mono Lake, California. The experimental conditionsand sampling regime resulted in high relative standard errors(mean, 33%) in stage abundance estimates not atypical of zooplanktonsampling regimes in lakes. A Monte Carlo analysis was used todetermine the uncertainty in estimated parameters and determinethe level of stage aggregation which maximized the amount ofinformation derived from the experiments.  相似文献   
3.
Annual egg production was determined for Artemia monica in Mono Lake, California, from 1983 to 1987. Annual oviparous (overwintering cyst) production was 3 and 7 million cysts m–2 yr–1 in 1986 and 1987, respectively, as measured by in situ sediment traps. Cyst production for the entire five year period was calculated using Artemia census data and inter-brood duration derived from mixolimnetic temperature. These estimates ranged from 2 to 5 million cysts m–2 yr–1. This method underestimated annual production by 30%, when compared to estimates using sediment traps. Cyst production was similar during 1983–1986 and showed a significant increase in 1987, which was due primarily to a larger reproductive population later in the year. Recruitment into the adult populations of the following spring ranged between 1.4 to 3.2%. Overall abundance of this generation reflected the patterns in annual cyst production. Compensatory effects must operate on the second generation of each year, since summer populations were similar in all years despite differences in cyst production.  相似文献   
4.
Ecosystems - Extensive floodplains and numerous lakes in the Amazon basin are well suited to examine the role of floodable lands within the context of the sources and processing of carbon within...  相似文献   
5.
Contents     

Volume Contents

Contents  相似文献   
6.
We examined the effect of concentration on nitrogen uptake patterns for a suburban stream in Maryland and addressed the question: How does NO3 ? uptake change as a function of concentration and how do uptake patterns compare with those found for NH4 +? We applied a longitudinal (stream channel corridor) approach in a forested stream section and conducted short-term nutrient addition experiments in late summer 2004. In the downstream direction, NO3 ? concentrations decreased because of residential development in headwaters and downstream dilution; NH4 + concentrations slightly increased. The uptake patterns for NO3 ? were very different from NH4 +. While NH4 + had a typical negative relationship between first-order uptake rate constant (K c ) and stream size, NO3 ? had a reverse pattern. We found differences for other metrics, including uptake velocity (V f ) and areal uptake rate (U). We attributed these differences to a stream size effect, a concentration effect and a biological uptake capacity effect. For NO3 ? these combined effects produced a downstream increase in K c , V f and U; for NH4 + they produced a downstream decrease in K c and V f , and a not well defined pattern for U. We attributed a downstream increase in NO3 ? uptake capacity to an increase in hyporheic exchange and a likely increase in carbon availability. We also found that K c and V f were indirectly related with concentration. Similar evidence of ‘nutrient saturation’ has been reported in other recent studies. Our results suggest that higher-order uptake models might be warranted when scaling NO3 ? uptake across watersheds that are subject to increased nitrogen loading.  相似文献   
7.
We examined seasonal and spatial linkages between N cycling and organic matter for a suburban stream in Maryland and addressed the question: How do longitudinal NH4 + uptake patterns vary seasonally and what is the effect of organic matter, stream size, transient storage and debris dams? We applied a longitudinal (stream channel corridor) approach in a forested stream section and conducted short-term nutrient addition experiments (adapted to account for the effect of nutrient saturation) covering 14–16 reaches, and compared two distinct seasons (late fall 2003 and late summer 2004). Longitudinal NH4 + uptake rate patterns had a distinct seasonal reversal; fall had the highest uptake rates in the upper reaches, while summer had the highest uptake rates in the lower reaches. This seasonal reversal was attributed to organic matter and evidenced by DON patterns. Transient storage did not have an expected effect on uptake rates in fall because it was confounded by leaf litter; litter produced higher uptakes, but also may have reduced transient storage. In summer however, uptake rates had a positive correlation with transient storage. Debris dams had no distinct effect on uptake in fall because of their recent formation. In summer however, the debris dam effect was significant; although the debris dams were hydraulically inactive then, the upstream reaches had 2–5 fold higher uptake rates. The seasonal and longitudinal differences in NH4 + uptake reflect interactions between flow conditions and the role of organic matter. Urbanization can alter both of these characteristics, hence affect stream N processing.  相似文献   
8.
To assess seasonal changes in phytoplanktonic chlorophyll distributions in Amazon floodplain lakes, a linear mixing model was applied to Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data acquired at four river stages: rising (April), high (June), decreasing (September), and low (November). The study area is located in a floodplain reach from Parintins (Amazonas) to near Almeirim (Pará). A three-end-member mixing model designed to uncouple three fractions [high suspended inorganic matter (ip), low inorganic suspended matter (w), and high chlorophyll a (Chl)] was tested in Lake Curuaí (1.5°S 55.43°W) based on field sampling done almost concurrently with satellite overpasses. During high water, phytoplankton patches are confined to lakes closer to terra firme under the influence of clear water inflow, whereas during the low and decreasing water stages, the patches are more evenly distributed over the floodplain.  相似文献   
9.
To examine the influence of landscape characteristics and landscape position on aquatic biogeochemistry, we sampled a total of 76 lakes within 14 different lake-chains spanning the latitudinal extent of the high-elevation Sierra Nevada (California). We measured water chemistry, dissolved organic matter (DOM), nutrients, and biotic variables in study catchments that encompassed representative ranges of area (3–22 km2), elevation (2,200–3,700 m.a.s.l), elevation change (50–700 m), and average slope (13°–26°). Hierarchical models were used to account for variability in biogeochemistry because they explicitly maintain the framework of lakes within individual lake-chains while accounting for variation among lake-chains. Unconditional means models, where lake-chain was a random effect, revealed significant differences among lake-chains for nearly all biogeochemical variables. Models explained 42–95% of this variability, with the majority of the variation (70%) explained by the among lake-chain component. To explore the amount of additional variation explained by lake landscape position, we added lake network number (LNN) to models. LNN explained a significant amount of additional variation (7% average) in 8 of 23 biogeochemical parameters. However, it explained more variability within individual lake-chains (75%), where among lake-chain differences did not obscure patterns. Patterns of increase with LNN were found for dissolved organic carbon and nitrogen, fluorescence of DOM, alkalinity, and bacterioplankton abundance, whereas nitrate and nitrogen to phosphorus nutrient ratios decreased. LNN explained variation because it served as a proxy for underlying catchment characteristics that changed consistently along downstream flow paths. To characterize the amount of variation explained by catchment characteristics alone, we fit a third model that included lake-chain as a random effect and landscape or lake morphometry attributes as fixed effects. Catchment characteristics explained about as much additional variation (6%) as LNN, but for substantially more biogeochemical parameters (18 out of 23). The catchment characteristics most predictive of biogeochemistry were land-cover factors delineating alpine and subalpine zones (elevation, slope, or proportions of rock or shrub cover). In general, catchment characteristics were stronger predictors of biogeochemistry than characteristics of lake morphometry, emphasizing the relative importance of landscape processes in snowmelt-dominated lake ecosystems.  相似文献   
10.
The significance of the transport of nutrient-rich hypolimnetic water via the benthic boundary layer (BBL) to the productivity of Mono Lake was studied using a coupled hydrodynamic and ecological model validated against field data. The coupled model enabled us to differentiate between the role of biotic components and hydrodynamic forcing on the internal recycling of nutrients necessary to sustain primary productivity. A 4-year period (1991–1994) was simulated in which recycled nutrients from zooplankton excretion and bacterially-mediated mineralization exceeded sediment fluxes as the dominant source for primary productivity. Model outputs indicated that BBL transport was responsible for a 53% increase in the flux of hypolimnetic ammonium to the photic zone during stratification with an increase in primary production of 6% and secondary production of 5%. Although the estimated impact of BBL transport on the productivity of Mono Lake was not large, significant nutrient fluxes were simulated during periods when BBL transport was most active.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号