首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   1篇
  国内免费   1篇
  2019年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2006年   7篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1976年   2篇
  1975年   1篇
  1970年   2篇
  1954年   2篇
  1953年   1篇
  1952年   11篇
  1951年   11篇
  1950年   8篇
排序方式: 共有114条查询结果,搜索用时 62 毫秒
1.
In this paper the recent population changes of the Wild Boar in different European countries is analysed through the study of hunting statistics. A simultaneous increase in numbers is observed throughout the whole area during the period 1965–1975. From 1975 onwards the population stabilizes itself apart from in peripheral areas like Finland. Potentially favourable factors which play a part in this process are discussed and certain reproductive and dispersive characteristics which favour its invasive behaviour are discussed.  相似文献   
2.
Following photo-ablation of receptor cells in the retina of the housefly's compound eye, their synaptic terminals degenerate with a timecourse which we have followed over 8 d. Degeneration deprives the monopolar interneurons in the first optic neuropile, the lamina, of their main synaptic input. Simultaneously it deprives one monopolar interneuron (L2) of one of its synaptic targets, as L2 makes numerous feedback synaptic contacts at which it is pre-synaptic upon receptor terminals. Because the feedback synapses are dyadic, input still remains available to the second element post-synaptic at the dyad, which does not degenerate. This element is T1, a higher-order interneuron from the next most proximal neuropile (the medulla). Some of the original feedback synaptic sites soon disappear as a consequence of the photo-ablation, but their loss is partly offset by the production of new synaptic contacts. The new pre-synaptic ribbons resemble those at the original sites except for being smaller. The sites are, moreover, monadic, with T1 now the sole post-synaptic partner. These results show that interneurons in the fly's lamina retain a dynamic capacity for synaptogenesis throughout much of adult life, normally a few weeks in Musca, and that during this synaptogenesis they re-enact the same cell preferences expressed earlier in development.  相似文献   
3.
We have established a primary culture system for Drosophila eye imaginal discs. With this system, we were able to obtain neurite outgrowth from intact eye discs, eye disc fragments, and dissociated eye imaginal disc cells. Immunoreactivity to antibody 24B10 indicates that these extending neurites are photoreceptor axons. Three culture media were tested for their ability to support the survival of and neurite extension from eye disc fragments in vitro at 23°C. These, with supplements, were: five parts of Schneider's Drosophila medium with four parts of basal Eagle's medium (“4+5”); Leibovitz's L-15 medium (L-15); and Shields and Sang's M3 modified medium (MM3). We obtained the best results with MM3 supplemented with 2% fetal bovine serum (FBS). Eye disc fragments survived in this medium for at least 20 days. Pigmentation in the nonphotoreceptor pigment cells in cultures from the prepupa required the presence of 20-hydroxyecdysone (20-HE) (1 μg/ml), whereas neurite outgrowth was seen in the absence of 20-HE. Donor animals had to fall within a range of ages to obtain appropriate eye disc differentiation in vitro. Eye discs from 5-h pupae (P+5) or older commenced ommachrome synthesis in vitro, in a temporal sequence close to that found in vivo, whereas the in vitro synthesis of this pigment was delayed in eye discs from younger flies. Average neurite length was not affected by age among pupae younger than P+5; but neurite outgrowth from P+24 was scarce, probably because by this time photoreceptor axons had already grown in vivo and were severed and unable to regenerate in vitro. Eye discs taken from third instar larvae or white prepupae continued their mitotic activity in vitro. Together with the advance of the morphogenetic furrow at the leading edge of retinal development, this observation is consistent with the evidence that pattern formation continues in vitro. Morphogenetic changes were manifested in cultures. Viability tests with calcein AM and ethidium bromide revealed few dead cells in living cultures. © 1995 John Wiley & Sons, Inc.  相似文献   
4.
5.
6.
7.
Cell junctions and the extracellular matrix (ECM) are crucial components in intercellular communication. These systems are thought to have become highly diversified during the course of vertebrate evolution. In the present study, we have examined whether the ancestral chordate already had such vertebrate systems for intercellular communication, for which we have searched the genome of the ascidian Ciona intestinalis. From this molecular perspective, the Ciona genome contains genes that encode protein components of tight junctions, hemidesmosomes and connexin-based gap junctions, as well as of adherens junctions and focal adhesions, but it does not have those for desmosomes. The latter omission is curious, and the ascidian type-I cadherins may represent an ancestral form of the vertebrate type-I cadherins and desmosomal cadherins, while Ci-Plakin may represent an ancestral protein of the vertebrate desmoplakins and plectins. If this is the case, then ascidians may have retained ancestral desmosome-like structures, as suggested by previous electron-microscopic observations. In addition, ECM genes that have been regarded as vertebrate-specific were also found in the Ciona genome. These results suggest that the last common ancestor shared by ascidians and vertebrates, the ancestor of the entire chordate clade, had essentially the same systems of cell junctions as those in extant vertebrates. However, the number of such genes for each family in the Ciona genome is far smaller than that in vertebrate genomes. In vertebrates these ancestral cell junctions appear to have evolved into more diverse, and possibly more complex, forms, compared with those in their urochordate siblings.  相似文献   
8.
Meinertzhagen IA 《Neuron》2000,28(2):310-313
  相似文献   
9.
10.
The rubbery protein resilin appears to form an integral part of the energy storage structures that enable many insects to jump by using a catapult mechanism. In plant sucking bugs that jump (Hemiptera, Auchenorrhyncha), the energy generated by the slow contractions of huge thoracic jumping muscles is stored by bending composite bow-shaped parts of the internal thoracic skeleton. Sudden recoil of these bows powers the rapid and simultaneous movements of both hind legs that in turn propel a jump. Until now, identification of resilin at these storage sites has depended exclusively upon characteristics that may not be specific: its fluorescence when illuminated with specific wavelengths of ultraviolet (UV) light and extinction of that fluorescence at low pH. To consolidate identification we have labelled the cuticular structures involved with an antibody raised against a product of the Drosophila CG15920 gene. This encodes pro-resilin, the first exon of which was expressed in E. coli and used to raise the antibody. We show that in frozen sections from two species, the antibody labels precisely those parts of the metathoracic energy stores that fluoresce under UV illumination. The presence of resilin in these insects is thus now further supported by a molecular criterion that is immunohistochemically specific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号