首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2015年   2篇
  2012年   1篇
  2011年   2篇
  2008年   3篇
  2007年   2篇
  2004年   1篇
  2002年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Heme oxygenases have an increased binding affinity for O2 relative to CO. Such discrimination is critical to the function of HO enzymes because one of the main products of heme catabolism is CO. Kinetic studies of mammalian and bacterial HO proteins reveal a significant decrease in the dissociation rate of O2 relative to other heme proteins such as myoglobin. Here we report the kinetic rate constants for the binding of O2 and CO by the heme oxygenases from Neisseria meningitidis (nmHO) and Pseudomonas aeruginosa (paHO). A combination of stopped-flow kinetic and laser flash photolysis experiments reveal that nmHO and paHO both maintain a similar degree of ligand discrimination as mammalian HO-1 and the HO from Corynebacterium diphtheriae. However, in addition to the observed decrease in dissociation rate for O2 by both nmHO and paHO, kinetic analyses show an increase in dissociation rate for CO by these two enzymes. The crystal structures of nmHO and paHO both contain significant differences from the mammalian HO-1 and bacterial C. diphtheriae HO structures, which suggests a structural basis for ligand discrimination in nmHO and paHO.  相似文献   
2.
Meharenna YT  Oertel P  Bhaskar B  Poulos TL 《Biochemistry》2008,47(39):10324-10332
Cytochrome c peroxidase (CCP) and ascorbate peroxidase (APX) have very similar structures, and yet neither CCP nor APX exhibits each other's activities with respect to reducing substrates. APX has a unique substrate binding site near the heme propionates where ascorbate H-bonds with a surface Arg and one heme propionate (Sharp et al. (2003) Nat. Struct. Biol. 10, 303-307). The corresponding region in CCP has a much longer surface loop, and the critical Arg residue that is required for ascorbate binding in APX is Asn in CCP. In order to convert CCP into an APX, the ascorbate-binding loop and critical arginine were engineered into CCP to give the CCP2APX mutant. The mutant crystal structure shows that the engineered site is nearly identical to that found in APX. While wild-type CCP shows no APX activity, CCP2APX catalyzes the peroxidation of ascorbate at a rate of approximately 12 min (-1), indicating that the engineered ascorbate-binding loop can bind ascorbate.  相似文献   
3.
The parasitic protozoa Leishmania major produces a peroxidase (L. major peroxidase; LmP) that exhibits activities characteristic of both yeast cytochrome c peroxidase (CCP) and plant cytosolic ascorbate peroxidase (APX). One common feature is a key Trp residue, Trp(208) in LmP and Trp(191) in CCP, that is situated adjacent to the proximal His heme ligand in CCP, APX, and LmP. In CCP, Trp(191) forms a stable cationic radical after reaction with H(2)O(2) to form Compound I; in APX, the radical is located on the porphyrin ring. In order to clarify the role of Trp(208) in LmP and to further probe peroxidase structure-function relationships, we have determined the crystal structure of LmP and have studied the role of Trp(208) using electron paramagnetic resonance spectroscopy (EPR), mutagenesis, and enzyme kinetics. Both CCP and LmP have an extended section of β structure near Trp(191) and Trp(208), respectively, which is absent in APX. This region provides stability to the Trp(191) radical in CCP. EPR of LmP Compound I exhibits an intense and stable signal similar to CCP Compound I. In the LmP W208F mutant, this signal disappears, indicating that Trp(208) forms a stable cationic radical. In LmP conversion of the Cys(197) to Thr significantly weakens the Compound I EPR signal and dramatically lowers enzyme activity. These results further support the view that modulation of the local electrostatic environment controls the stability of the Trp radical in peroxidases. Our results also suggest that the biological role of LmP is to function as a cytochrome c peroxidase.  相似文献   
4.
Cytochrome P450cin (CYP176A1) is a bacterial P450 isolated from Citrobacter braakii that catalyzes the hydroxylation of cineole to (S)-6beta-hydroxycineole. This initiates the biodegradation of cineole, enabling C. braakii to live on cineole as its sole source of carbon and energy. P450cin lacks the almost universally conserved threonine residue believed to be involved in dioxygen activation and instead contains an asparagine at this position (Asn-242). To investigate the role of Asn-242 in P450cin catalysis, it was converted to alanine, and the resultant mutant was characterized. The characteristic CO-bound spectrum and spectrally determined K(D) for substrate binding were unchanged in the mutant. The x-ray crystal structures of the substrate-free and -bound N242A mutant were determined and show that the only significant change is in a reorientation of the substrate such that (R)-6alpha-hydroxycineole should be a major product. Molecular dynamics simulations of both wild type and mutant are consistent with the change in regio- and stereoselectivity predicted from the crystal structure. The mutation has only a modest effect on enzyme activity and on the diversion of the NADPH-reducing equivalent toward unproductive peroxide formation. Product profile analysis shows that (R)-6alpha-hydroxycineole is the main product, which is consistent with the crystal structure. These results demonstrate that Asn-242 is not a functional replacement for the conserved threonine in other P450s but, rather, is critical in controlling regioselective substrate oxidation.  相似文献   
5.

Background

Epidemiological studies have shown that imposing travel restrictions to prevent or delay an influenza pandemic may not be feasible. To delay an epidemic substantially, an extremely high proportion of trips (~99%) would have to be restricted in a homogeneously mixing population. Influenza is, however, strongly influenced by age-dependent transmission dynamics, and the effectiveness of age-specific travel restrictions, such as the selective restriction of travel by children, has yet to be examined.

Methods

A simple stochastic model was developed to describe the importation of infectious cases into a population and to model local chains of transmission seeded by imported cases. The probability of a local epidemic, and the time period until a major epidemic takes off, were used as outcome measures, and travel restriction policies in which children or adults were preferentially restricted were compared to age-blind restriction policies using an age-dependent next generation matrix parameterized for influenza H1N1-2009.

Results

Restricting children from travelling would yield greater reductions to the short-term risk of the epidemic being established locally than other policy options considered, and potentially could delay an epidemic for a few weeks. However, given a scenario with a total of 500 imported cases over a period of a few months, a substantial reduction in the probability of an epidemic in this time period is possible only if the transmission potential were low and assortativity (i.e. the proportion of contacts within-group) were unrealistically high. In all other scenarios considered, age-structured travel restrictions would not prevent an epidemic and would not delay the epidemic for longer than a few weeks.

Conclusions

Selectively restricting children from traveling overseas during a pandemic may potentially delay its arrival for a few weeks, depending on the characteristics of the pandemic strain, but could have less of an impact on the economy compared to restricting adult travelers. However, as long as adults have at least a moderate potential to trigger an epidemic, selectively restricting the higher risk group (children) may not be a practical option to delay the arrival of an epidemic substantially.  相似文献   
6.
The evolutionary pressures that shaped the specificity and catalytic efficiency of enzymes can only be speculated. While directed evolution experiments show that new functions can be acquired under positive selection with few mutations, the role of negative selection in eliminating undesired activities and achieving high specificity remains unclear. Here we examine intermediates along the ‘lineage’ from a naturally occurring C12-C20 fatty acid hydroxylase (P450BM3) to a laboratory-evolved P450 propane monooxygenase (P450PMO) having 20 heme domain substitutions compared to P450BM3. Biochemical, crystallographic, and computational analyses show that a minimal perturbation of the P450BM3 fold and substrate-binding pocket accompanies a significant broadening of enzyme substrate range and the emergence of propane activity. In contrast, refinement of the enzyme catalytic efficiency for propane oxidation (∼ 9000-fold increase in kcat/Km) involves profound reshaping and partitioning of the substrate access pathway. Remodeling of the substrate-recognition mechanisms ultimately results in remarkable narrowing of the substrate profile around propane and enables the acquisition of a basal iodomethane dehalogenase activity as yet unknown in natural alkane monooxygenases. A highly destabilizing L188P substitution in a region of the enzyme that undergoes a large conformational change during catalysis plays an important role in adaptation to the gaseous alkane. This work demonstrates that positive selection alone is sufficient to completely respecialize the cytochrome P450 for function on a nonnative substrate.  相似文献   
7.
Hu FL  B Liu  ZM Liu  YT Fang  CA Busso 《Phyton》2015,84(1):209-221
Grasslands are one of the most widespread landscapes worldwide, covering approximately one-fifth of the world’s land surface, where grazing is a common practice. How carbon storage responds to grazing in steppes remains poorly understood. We quantified the effects of grazing on community composition and species diversity, and carbon storage in two typical grasslands of northeastern China, one in Horqin and the other one in Hulunbeier. In both grasslands, grazing did not influence plant species diversity. However, it substantially decreased aboveground carbon by 31% and 54% in Horqin and Hulunbeier, respectively. Fenced and grazing treatments showed a similar belowground carbon at both locations. The predominant carbon pool in the study grassland ecosystem was found in the upper 100 cm soil depth, from 98.2 to 99.1% of the total carbon storage. There were no significant effects of grazing on soil carbon neither in the whole profile nor in the uppermost 20 cm soil depth in the two study grasslands. Studies on the effects of varying rangeland management, such as region disparity and grazing systems, may have important consequences on species diversity and carbon partitioning, and thus on rangeland stability and ecosystem functioning.  相似文献   
8.
Cytochrome P450 reductase, which delivers electrons from NADPH to microsomal P450s, consists of a single polypeptide that contains both FAD and FMN. The bacterial P450cin utilizes a similar electron transport system except the FAD/FMN reductase consists of two separate polypeptides where the FMN protein, cindoxin, shuttles electrons between the FAD-containing cindoxin reductase and P450cin. Here we characterize the kinetics and specificity of electron transfer between cindoxin and P450cin as well as discuss the influence of possible binding surface interactions using homology models.  相似文献   
9.
The Notch pathway contributes to self-renewal of tumor-initiating cell and inhibition of normal colonic epithelial cell differentiation. Deregulated expression of Notch1 and Jagged1 is observed in colorectal cancer. Hairy/enhancer of split (HES) family, the most characterized targets of Notch, involved in the development of many cancers. In this study, we explored the role of Hes1 in the tumorigenesis of colorectal cancer. Knocking down Hes1 induced CRC cell senescence and decreased the invasion ability, whereas over-expression of Hes1 increased STAT3 phosphorylation activity and up-regulated MMP14 protein level. We further explored the expression of Hes1 in human colorectal cancer and found high Hes1 mRNA expression is associated with poor prognosis in CRC patients. These findings suggest that Hes1 regulates the invasion ability through the STAT3-MMP14 pathway in CRC cells and high Hes1 expression is a predictor of poor prognosis of CRC.  相似文献   
10.
This paper reports on the application of the molecular Lego approach to P450 enzymes. Protein domains are used as catalytic (P450 BM3 haem domain and human P450 2E1) or electron transfer (flavodoxin and P450 BM3 reductase) modules. The objectives are to build assemblies with improved electrochemical properties, to construct soluble human P450 enzymes, and to generate libraries of new P450 catalytic modules based on P450 BM3. A rationally designed, gene-fused assembly (BMP-FLD) was obtained from the soluble haem domain of cytochrome P450 BM3 from Bacillus megaterium (BMP) and flavodoxin from Desulfovibrio vulgaris (FLD). The assembly was expressed successfully and characterised in its active form, displaying improved electrochemical properties. Solubilisation of the human, membrane-bound P450 2E1 (2E1) was achieved by fusing key elements of the 2E1 enzyme with selected parts of P450 BM3. An assembly containing the first 54 residues of P450 BM3, the whole sequence of P450 2E1 from residue 81 and the reductase domain of P450 BM3 was constructed. The 2E1-BM3 assembly was successfully expressed in the cytosol of Escherichia coli. The soluble form of 2E1-BM3 was reduced in carbon monoxide atmosphere and displayed the typical absorption peak at 450 nm, characteristic of a folded and active P450 enzyme. Finally, the alkali method previously developed in this laboratory was used to screen for P450 activity within a library of random mutants of P450 BM3. A number of variants active towards non-physiological substrates, such as pesticides and polyaromatic hydrocarbons were identified, providing new P450 catalytic modules. The combination of these three areas of research provide interesting tools for exploitation in nanobiotechnology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号