首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2014年   1篇
  2011年   1篇
  2008年   1篇
  2006年   4篇
  2003年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
The antisense oligonucleotide Nusinersen has been recently licensed to treat spinal muscular atrophy (SMA). Since SMA type 3 is characterized by variable phenotype and milder progression, biomarkers of early treatment response are urgently needed. We investigated the cerebrospinal fluid (CSF) concentration of neurofilaments in SMA type 3 patients treated with Nusinersen as a potential biomarker of treatment efficacy. The concentration of phosphorylated neurofilaments heavy chain (pNfH) and light chain (NfL) in the CSF of SMA type 3 patients was evaluated before and after six months since the first Nusinersen administration, performed with commercially available enzyme-linked immunosorbent assay (ELISA) kits. Clinical evaluation of SMA patients was performed with standardized motor function scales. Baseline neurofilament levels in patients were comparable to controls, but significantly decreased after six months of treatment, while motor functions were only marginally ameliorated. No significant correlation was observed between the change in motor functions and that of neurofilaments over time. The reduction of neurofilament levels suggests a possible early biochemical effect of treatment on axonal degeneration, which may precede changes in motor performance. Our study mandates further investigations to assess neurofilaments as a marker of treatment response.  相似文献   
2.
3.
Maternal stress and malnutrition modify intrauterine fetal development with impact on postnatal blood pressure, nutrient, water, and electrolyte metabolism. The present study explored the possible involvement of maternal serum- and glucocorticoid-inducible kinase (SGK)-1 in fetal programming of blood pressure. To this end, wild-type (sgk1(+/+)) male mice were mated with SGK1 knockout (sgk1(-/-)) female mice, and sgk1(-/-) males with sgk1(+/+) females, resulting in both cases in heterozygotic (sgk1(-/+)) offspring. Following prenatal protein restriction, the offspring of sgk1(+/+) mothers gained weight significantly slower and had significantly higher blood pressure after birth. Moreover, a sexual dimorphism was apparent in fasting blood glucose and plasma corticosterone concentrations, with higher levels in female offspring. In contrast, prenatal protein restriction of sgk1(-/-) mothers had no significant effect on postnatal weight gain, blood pressure, plasma glucose concentration, or corticosterone levels, irrespective of offspring sex. Plasma aldosterone concentration, urinary flow rates, and urinary excretions of Na(+) and K(+) were not significantly modified by either maternal genotype or nutritional manipulation. In conclusion, maternal signals mediated by SGK1 may play a decisive role in fetal programming of hypertension induced by prenatal protein restriction.  相似文献   
4.
Mtr4 is a conserved Ski2-like RNA helicase and a subunit of the TRAMP complex that activates exosome-mediated 3′-5′ turnover in nuclear RNA surveillance and processing pathways. Prominent features of the Mtr4 structure include a four-domain ring-like helicase core and a large arch domain that spans the core. The ‘ratchet helix’ is positioned to interact with RNA substrates as they move through the helicase. However, the contribution of the ratchet helix in Mtr4 activity is poorly understood. Here we show that strict conservation along the ratchet helix is particularly extensive for Ski2-like RNA helicases compared to related helicases. Mutation of residues along the ratchet helix alters in vitro activity in Mtr4 and TRAMP and causes slow growth phenotypes in vivo. We also identify a residue on the ratchet helix that influences Mtr4 affinity for polyadenylated substrates. Previous work indicated that deletion of the arch domain has minimal effect on Mtr4 unwinding activity. We now show that combining the arch deletion with ratchet helix mutations abolishes helicase activity and produces a lethal in vivo phenotype. These studies demonstrate that the ratchet helix modulates helicase activity and suggest that the arch domain plays a previously unrecognized role in unwinding substrates.  相似文献   
5.
In vitro experiments have demonstrated the stimulating effect of serum- and glucocorticoid-inducible kinase (SGK)1 on the activity of the Na+/H+ exchanger (NHE3). SGK1 requires activation by phosphoinositide-dependent kinase (PDK)1, which may thus similarly play a role in the regulation of NHE3-dependent epithelial electrolyte transport. The present study was performed to explore the role of PDK1 in the regulation of NHE3 activity. Because mice completely lacking functional PDK1 are not viable, hypomorphic mice expressing approximately 20% of PDK1 (pdk1(hm)) were compared with their wild-type littermates (pdk1(wt)). NHE3 activity in the intestine and PDK1-overexpressing HEK-293 cells was estimated by utilizing 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein fluorescence for the determination of intracellular pH. NHE activity was reflected by the Na+-dependent pH recovery from an ammonium prepulse (DeltapH(NHE)). The pH changes after an ammonium pulse allowed the calculation of cellular buffer capacity, which was not significantly different between pdk1(hm) and pdk1(wt) mice. DeltapH(NHE) was in pdk1(hm) mice, only 30 +/- 6% of the value obtained in pdk1(wt) mice. Conversely, DeltapH(NHE) was 32 +/- 7% larger in PDK1-overexpressing HEK-293 cells than in HEK-293 cells expressing the empty vector. The difference between pdk1(hm) and pdk1(wt) mice and between PDK1-overexpressing and empty vector-transfected HEK cells, respectively, was completely abolished in the presence of the NHE3 inhibitor S3226 (10 microM). In conclusion, defective PDK1 expression leads to significant impairment of NHE3 activity in the intestine, pointing to a role of PDK1-dependent signaling in the regulation of NHE-mediated electrolyte transport.  相似文献   
6.
Motor neuron disease (MND) is a rare group of disorders characterized by degeneration of motor neurons (MNs). The most common form of MND, amyotrophic lateral sclerosis (ALS), is an incurable disease with a variable rate of progression. The search of robust biomarkers able to discriminate among different ALS forms is paramount to properly stratify patients, and to identify those who could most likely benefit from experimental therapies. Phosphorylated-neurofilament heavy chain (p-NfH) and neurofilament light chain (NfL) are neuron-specific components of the cytoskeleton and may represent reliable markers of neuronal injury in neurological disorders. In this study, we described our cohort of ALS patients in order to investigate whether and how cerebrospinal fluid (CSF) p-NfH and NfL levels may reflect progression rate, MN involvement and the extent of neurodegeneration. CSF p-NfH and NfL were significantly increased in ALS compared with healthy and disease controls, including patients with other forms of MND, and were higher in patients with more aggressive disease course, reflecting progression rate. We also evaluated neurofilament diagnostic accuracy in our centre, identifying with high sensitivity and 100% specificity cut-off values of 0.652 ng/mL for CSF p-NfH (P < .0001) and of 1261 pg/mL for NfL (P < .0001) in discriminating ALS from healthy controls. CSF neurofilaments were significantly correlated with ALS progression rate. Overall, CSF neurofilaments appear to reflect the burden of neurodegeneration in MND and represent reliable diagnostic and prognostic biomarkers in ALS.  相似文献   
7.
Serum- and glucocorticoid-inducible kinase (SGK) 1 and SGK3 share the ability to upregulate several ion channels, including the epithelial Na(+) channel. Whereas SGK1 is under genomic control of mineralocorticoids and glucocorticoids, SGK3 is constitutively expressed. The SKG1-knockout (sgk1(-/-)) mouse is seemingly normal when it is fed a standard diet, but its ability to retain NaCl is impaired when it is fed a salt-deficient diet. In the SGK3-knockout (sgk3(-/-)) mouse fed standard and salt-deficient diets, hair growth is strikingly delayed but NaCl excretion is normal. Thus the possibility was considered that SGK1 and SGK3 could mutually replace each other, thus preventing severe NaCl loss in sgk1(-/-) and sgk3(-/-) mice. We crossed SGK1- and SGK3-knockout mice and compared renal electrolyte excretion of the double mutants (sgk1(-/-)/sgk3(-/-)) with that of their wild-type littermates (sgk1(+/+)/sgk3(+/+)). Similar to sgk3(-/-) mice, the sgk1(-/-)/sgk3(-/-) mice display delayed hair growth. Blood pressure was slightly, but significantly (P < 0.03), lower in sgk1(-/-)/sgk3(-/-) (102 +/- 4 mmHg) than in sgk1(+/+)/sgk3(+/+) (114 +/- 3 mmHg) mice, a difference that was maintained in mice fed low- and high-salt diets. Plasma aldosterone concentrations were significantly (P < 0.01) higher in sgk1(-/-)/sgk3(-/-) than in sgk1(+/+)sgk3(+/+) mice fed control (511 +/- 143 vs. 143 +/- 32 pg/ml) and low-salt (1,325 +/- 199 vs. 362 +/- 145 pg/ml) diets. During salt depletion, absolute and fractional excretions of Na(+) were significantly (P < 0.01) higher in sgk1(-/-)/sgk3(-/-) (1.2 +/- 0.2 micromol/24 h g body wt, 0.12 +/- 0.03%) than in sgk1(+/+)/sgk3(+/+) (0.4 +/- 0.1 micromol/24 h g body wt, 0.04 +/- 0.01%) mice. The sgk1(-/-)/sgk3(-/-) mice share the delayed hair growth with sgk3(-/-) mice and the modestly impaired renal salt retention with sgk1(-/-) mice. Additional lack of the isoform kinase does not substantially compound the phenotype for either property.  相似文献   
8.
The phosphoinositide-dependent kinase-1 (PDK-1) activates the serum- and glucocorticoid-inducible kinase and protein kinase B isoforms, which, in turn, are known to stimulate the renal and intestinal Na+-dependent glucose transporter 1. The present study has been performed to explore the role of PDK-1 in electrogenic glucose transport in small intestine and proximal renal tubules. To this end, mice expressing approximately 20% of PDK-1 (pdk1hm) were compared with their wild-type littermates (pdk1wt). According to Ussing chamber experiments, electrogenic glucose transport was significantly smaller in the jejunum of pdk1hm than of pdk1wt mice. Similarly, proximal tubular electrogenic glucose transport in isolated, perfused renal tubule segments was decreased in pdk1hm compared with pdk1wt mice. Intraperitoneal injection of 3 g/kg body wt glucose resulted in a similar increase of plasma glucose concentration in pdk1hm and in pdk1wt mice but led to a higher increase of urinary glucose excretion in pdk1hm mice. In conclusion, reduction of functional PDK-1 leads to impairment of electrogenic intestinal glucose absorption and renal glucose reabsorption. The experiments disclose a novel element of glucose transport regulation in kidney and small intestine.  相似文献   
9.
The RNA-binding motif protein 3 (RBM3) was initially discovered as a putative cancer biomarker based on its differential expression in various cancer forms in the Human Protein Atlas (HPA). We previously reported an association between high expression of RBM3 and prolonged survival in breast and epithelial ovarian cancer (EOC). Because the function of RBM3 has not been fully elucidated, the aim of this study was to use gene set enrichment analysis to identify the underlying biologic processes associated with RBM3 expression in a previously analyzed EOC cohort (cohort 1, n = 267). This revealed an association between RBM3 expression and several cellular processes involved in the maintenance of DNA integrity. RBM3-regulated genes were subsequently screened in the HPA to select for putative prognostic markers, and candidate proteins were analyzed in the ovarian cancer cell line A2780, whereby an up-regulation of Chk1, Chk2, and MCM3 was demonstrated in siRBM3-treated cells compared to controls. The prognostic value of these markers was assessed at the messenger RNA level in cohort 1 and the protein level in an independent EOC cohort (cohort 2, n = 154). High expression levels of Chk1, Chk2, and MCM3 were associated with a significantly shorter survival in both cohorts, and phosphorylated Chk2 was an adverse prognostic marker in cohort 2. These results uncover a putative role for RBM3 in DNA damage response, which might, in part, explain its cisplatin-sensitizing properties and good prognostic value in EOC. Furthermore, it is demonstrated that Chk1, Chk2, and MCM3 are poor prognostic markers in EOC.  相似文献   
10.
Mating elicits two postmating responses in many insect females: the egg laying rate increases and sexual receptivity is reduced. In Drosophila melanogaster, two peptides of the male genital tract, sex-peptide and DUP99B, elicit these postmating responses when injected into virgin females. Here we show that the gene encoding DUP99B is expressed in the male ejaculatory duct and in the cardia of both sexes. The DUP99B that is synthesized in the ejaculatory duct is transferred, during mating, into the female genital tract. Expression of the gene is first seen in a late pupal stage. Males containing an intact ejaculatory duct, but lacking accessory glands, initiate the two postmating responses in their female partners [Xue, L. & Noll, M. (2000) Proc. Natl Acad. Sci. USA97, 3272-3275]. Although such males synthesize DUP99B in wild-type quantities, they elicit only weak postmating responses in their mating partners. Males lacking the Dup99B gene elicit the two postmating responses to the same extent as wild-type males. These results suggest that both sex-peptide and DUP99B can elicit both responses in vivo. However, sex-peptide seems to play the major role in eliciting the postmating responses, while DUP99B may have specialized for other, as yet unknown, functions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号