首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28377篇
  免费   2366篇
  国内免费   2098篇
  32841篇
  2024年   71篇
  2023年   379篇
  2022年   868篇
  2021年   1460篇
  2020年   942篇
  2019年   1157篇
  2018年   1100篇
  2017年   823篇
  2016年   1194篇
  2015年   1765篇
  2014年   2015篇
  2013年   2199篇
  2012年   2649篇
  2011年   2290篇
  2010年   1443篇
  2009年   1153篇
  2008年   1569篇
  2007年   1310篇
  2006年   1196篇
  2005年   1011篇
  2004年   833篇
  2003年   721篇
  2002年   653篇
  2001年   506篇
  2000年   384篇
  1999年   440篇
  1998年   270篇
  1997年   227篇
  1996年   256篇
  1995年   212篇
  1994年   256篇
  1993年   155篇
  1992年   220篇
  1991年   184篇
  1990年   174篇
  1989年   114篇
  1988年   84篇
  1987年   75篇
  1986年   51篇
  1985年   65篇
  1984年   51篇
  1983年   39篇
  1982年   37篇
  1981年   25篇
  1980年   16篇
  1979年   25篇
  1978年   16篇
  1976年   16篇
  1975年   15篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Testosterone was previously shown to induce an early (less than 1 min) receptor-dependent stimulation of endocytosis, hexose and amino acid transport in mouse kidney cortex (Koenig, H., Goldstone, A. and Lu, C.Y. (1982) Biochem. Biophys. Res. Commun. 104, 165-172). Testosterone (10(-8) M) has now been found to stimulate rapidly (less than 30 s) the influx and efflux of 45Ca2+ in cortex slices. Testosterone also decreased mitochondrial 45Ca and augmented soluble 45Ca, indicating a mobilization of intracellular calcium. Incubation of cortex slices in calcium-free medium without or with 2.5 mM EGTA decreased basal endocytosis, hexose and amino acid transport and blocked the hormonal response. 100 microM verapamil blocked the hormonal response without affecting basal transport. The calcium ionophore A23187 rapidly stimulated endocytosis, hexose and amino acid transport. These data indicate that androgenic stimulation of membrane transport functions involves an increased influx of extracellular calcium and a mobilization of intracellular calcium. Increased cytosolic Ca2+ is probably the regulatory signal for these transport processes.  相似文献   
2.
Series of nanoporous carbons are prepared from sunflower seed shell (SSS) by two different strategies and used as electrode material for electrochemical double-layer capacitor (EDLC). The surface area and pore-structure of the nanoporous carbons are characterized intensively using N2 adsorption technique. The results show that the pore-structure of the carbons is closely related to activation temperature and dosage of KOH. Electrochemical measurements show that the carbons made by impregnation-activation process have better capacitive behavior and higher capacitance retention ratio at high drain current than the carbons made by carbonization-activation process, which is due to that there are abundant macroscopic pores and less interior micropore surface in the texture of the former. More importantly, the capacitive performances of these carbons are much better than ordered mesoporous carbons and commercial wood-based active carbon, thus highlighting the success of preparing high performance electrode material for EDLC from SSS.  相似文献   
3.
Lateral membrane heterogeneity, in the form of lipid rafts and microdomains, is currently implicated in cell processes including signal transduction, endocytosis, and cholesterol trafficking. Various biophysical techniques have been used to detect and characterize lateral membrane domains. Among these, Förster resonance energy transfer (FRET) has the crucial advantage of being sensitive to domain sizes smaller than 50-100 nm, below the resolution of optical microscopy but, apparently, similar to those of rafts in cell membranes. In the last decade, several formalisms for the analysis of FRET in heterogeneous membrane systems have been derived and applied to the study of microdomains. They are critically described and illustrated here.  相似文献   
4.
The effects of three aryl acetylenes, 1-ethynylpyrene (EP), 2-ethynylnaphthalene (EN) and 3-ethynylperylene (EPE), upon the metabolism of benzo[a]pyrene (BaP) by microsomes isolated from rat liver were investigated. These aryl acetylenes all inhibited the total metabolism of BaP. Formation of BaP 7,8-dihydrodiol and BaP tetrol products by microsomal preparations from rats that had been pretreated with 3-methylcholanthrene (3MC) were preferentially inhibited. The effects of EP upon the metabolism of BaP 7,8-dihydrodiol by microsomes from rat liver were also studied. This aryl acetylene strongly inhibited the formation of BaP tetrols from BaP 7,8-dihydrodiol by liver microsomes both from untreated rats and from rats pretreated with 3MC, but enhanced the conversion of the BaP dihydrodiol into other metabolites.  相似文献   
5.
Resolving the conflicts between biodiversity conservation and socioeconomic development is a global pursuit for the long-run prospects of the human species. Based on Wenchuan County, a typical county in southwestern China, a group of 20 indicators quantifying regional biodiversity and socioeconomic development was established to classify and evaluate the county area spatially. A fuzzy c-means clustering (FCM) algorithm was used as the classification method. Three indices including BD, DL and DR characterizing the value of biodiversity, the level and rate of socioeconomic development of the delineated regions were formulated. The results indicated that Wenchuan County was optimally classified into 4 types of regions (region I to IV). The area percentages of the regions vary widely from 4.3 to 65.7%. The sequences of the regions on biodiversity, socioeconomic development level, and socioeconomic development rate were, respectively, IV > II > III > I, I > III > II > IV and III >I >II >IV. The spatial strategy on coordinating biodiversity conservation and regional development is to develop mainly from the east(I, II, III) and to conserve mainly in the west(IV). Eco-industry, such as eco-tourism and eco-agriculture, need to be emphasized in the process of regional development. The quantitative methods used here may have a wide applicability.  相似文献   
6.
Alzheimer’s disease (AD) is a devastating neurodegenerative condition with no known cure. While current therapies target late-stage amyloid formation and cholinergic tone, to date, these strategies have proven ineffective at preventing disease progression. The reasons for this may be varied, and could reflect late intervention, or, that earlier pathogenic mechanisms have been overlooked and permitted to accelerate the disease process. One such example would include synaptic pathology, the disease component strongly associated with cognitive impairment. Dysregulated Ca2+ homeostasis may be one of the critical factors driving synaptic dysfunction. One of the earliest pathophysiological indicators in mutant presenilin (PS) AD mice is increased intracellular Ca2+ signaling, predominantly through the ER-localized inositol triphosphate (IP3) and ryanodine receptors (RyR). In particular, the RyR-mediated Ca2+ upregulation within synaptic compartments is associated with altered synaptic homeostasis and network depression at early (presymptomatic) AD stages. Here, we offer an alternative approach to AD therapeutics by stabilizing early pathogenic mechanisms associated with synaptic abnormalities. We targeted the RyR as a means to prevent disease progression, and sub-chronically treated AD mouse models (4-weeks) with a novel formulation of the RyR inhibitor, dantrolene. Using 2-photon Ca2+ imaging and patch clamp recordings, we demonstrate that dantrolene treatment fully normalizes ER Ca2+ signaling within somatic and dendritic compartments in early and later-stage AD mice in hippocampal slices. Additionally, the elevated RyR2 levels in AD mice are restored to control levels with dantrolene treatment, as are synaptic transmission and synaptic plasticity. Aβ deposition within the cortex and hippocampus is also reduced in dantrolene-treated AD mice. In this study, we highlight the pivotal role of Ca2+ aberrations in AD, and propose a novel strategy to preserve synaptic function, and thereby cognitive function, in early AD patients.  相似文献   
7.
8.
The final steps in the synthesis of acetyl-CoA by CO dehydrogenase (CODH) have been studied by following the exchange reaction between CoA and the CoA moiety of acetyl-CoA. This reaction had been studied earlier (Pezacka, E., and Wood, H. G. (1986) J. Biol. Chem. 261, 1609-1615 and Ramer, W. E., Raybuck, S. A., Orme-Johnson, W. H., and Walsh, C. T. (1989) Biochemistry 28, 4675-4680). The CoA/acetyl-CoA exchange activity was determined at various controlled redox potentials and was found to be activated by a one-electron reduction with half-maximum activity occurring at -486 mV. There is approximately 2000-fold stimulation of the exchange by performing the reaction at -575 mV relative to the rate at -80 mV. Binding of CoA to CODH is not sensitive to the redox potential; therefore, the reductive activation affects some step other than association/dissociation of CoA. We propose that a metal center on CODH with a midpoint reduction potential of less than or equal to -486 mV is activated by a one-electron reduction to cleave the carbonyl-sulfur bond and/or bind the acetyl group of acetyl-CoA. Based on a comparison of the redox dependence of this reaction with that for methylation of CODH (Lu, W-P., Harder, S. R., and Ragsdale, S. W. (1990) J. Biol. Chem. 265, 3124-3133) and CO2 reduction and formation of the Ni-Fe-C EPR signal (Lindahl, P. A., Münck, E., and Ragsdale, S. W. (1990) J. Biol. Chem. 265, 3873-3879), we propose that the assembly of the acetyl group of acetyl-CoA, i.e. binding the methyl group of the methylated corrinoid/iron-sulfur protein, binding CO, and methyl migration to form the acetyl-CODH intermediate, occur at the novel Ni-Fe3-4-containing site in CODH. CO has two effects on the CoA/acetyl-CoA exchange: it activates the reaction due to its reductive capacity and its acts as a noncompetitive inhibitor. We also discovered that the CoA/acetyl-CoA exchange was inhibited by nitrous oxide via an oxidative mechanism. In the presence of a low-potential electron donor, CODH becomes a nitrous oxide reductase which catalytically converts N2O to N2. This study combined with earlier results (Lu, W-P., Harder, S. R., and Ragsdale, S. W. (1990) J. Biol. Chem. 265, 3124-3133) establishes that the two-subunit form of CODH is completely active in all reactions known to be catalyzed by CODH.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号