首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3348篇
  免费   285篇
  国内免费   2篇
  3635篇
  2024年   5篇
  2023年   28篇
  2022年   68篇
  2021年   132篇
  2020年   78篇
  2019年   103篇
  2018年   103篇
  2017年   83篇
  2016年   142篇
  2015年   219篇
  2014年   198篇
  2013年   278篇
  2012年   311篇
  2011年   288篇
  2010年   175篇
  2009年   146篇
  2008年   203篇
  2007年   160篇
  2006年   157篇
  2005年   128篇
  2004年   110篇
  2003年   105篇
  2002年   96篇
  2001年   35篇
  2000年   26篇
  1999年   24篇
  1998年   20篇
  1997年   11篇
  1996年   5篇
  1995年   9篇
  1994年   8篇
  1993年   10篇
  1992年   6篇
  1991年   12篇
  1990年   5篇
  1989年   5篇
  1986年   10篇
  1985年   5篇
  1984年   11篇
  1983年   6篇
  1982年   7篇
  1981年   6篇
  1979年   9篇
  1978年   10篇
  1977年   6篇
  1976年   9篇
  1975年   6篇
  1974年   5篇
  1973年   8篇
  1970年   5篇
排序方式: 共有3635条查询结果,搜索用时 15 毫秒
1.
Alzheimer’s disease (AD) is a devastating neurodegenerative condition with no known cure. While current therapies target late-stage amyloid formation and cholinergic tone, to date, these strategies have proven ineffective at preventing disease progression. The reasons for this may be varied, and could reflect late intervention, or, that earlier pathogenic mechanisms have been overlooked and permitted to accelerate the disease process. One such example would include synaptic pathology, the disease component strongly associated with cognitive impairment. Dysregulated Ca2+ homeostasis may be one of the critical factors driving synaptic dysfunction. One of the earliest pathophysiological indicators in mutant presenilin (PS) AD mice is increased intracellular Ca2+ signaling, predominantly through the ER-localized inositol triphosphate (IP3) and ryanodine receptors (RyR). In particular, the RyR-mediated Ca2+ upregulation within synaptic compartments is associated with altered synaptic homeostasis and network depression at early (presymptomatic) AD stages. Here, we offer an alternative approach to AD therapeutics by stabilizing early pathogenic mechanisms associated with synaptic abnormalities. We targeted the RyR as a means to prevent disease progression, and sub-chronically treated AD mouse models (4-weeks) with a novel formulation of the RyR inhibitor, dantrolene. Using 2-photon Ca2+ imaging and patch clamp recordings, we demonstrate that dantrolene treatment fully normalizes ER Ca2+ signaling within somatic and dendritic compartments in early and later-stage AD mice in hippocampal slices. Additionally, the elevated RyR2 levels in AD mice are restored to control levels with dantrolene treatment, as are synaptic transmission and synaptic plasticity. Aβ deposition within the cortex and hippocampus is also reduced in dantrolene-treated AD mice. In this study, we highlight the pivotal role of Ca2+ aberrations in AD, and propose a novel strategy to preserve synaptic function, and thereby cognitive function, in early AD patients.  相似文献   
2.
Complex coevolutionary relationships among competitors, predators, and prey have shaped taxa diversity, life history strategies, and even the avian migratory patterns we see today. Consequently, accurate documentation of prey selection is often critical for understanding these ecological and evolutionary processes. Conventional diet study methods lack the ability to document the diet of inconspicuous or difficult‐to‐study predators, such as those with large home ranges and those that move vast distances over short amounts of time, leaving gaps in our knowledge of trophic interactions in many systems. Migratory raptors represent one such group of predators where detailed diet studies have been logistically challenging. To address knowledge gaps in the foraging ecology of migrant raptors and provide a broadly applicable tool for the study of enigmatic predators, we developed a minimally invasive method to collect dietary information by swabbing beaks and talons of raptors to collect trace prey DNA. Using previously published COI primers, we were able to isolate and reference gene sequences in an open‐access barcode database to identify prey to species. This method creates a novel avenue to use trace molecular evidence to study prey selection of migrating raptors and will ultimately lead to a better understanding of raptor migration ecology. In addition, this technique has broad applicability and can be used with any wildlife species where even trace amounts of prey debris remain on the exterior of the predator after feeding.  相似文献   
3.
At around 7 months of age, human infants begin to reliably produce well-formed syllables containing both consonants and vowels, a behavior called canonical babbling. Over subsequent months, the frequency of canonical babbling continues to increase. How the infant’s nervous system supports the acquisition of this ability is unknown. Here we present a computational model that combines a spiking neural network, reinforcement-modulated spike-timing-dependent plasticity, and a human-like vocal tract to simulate the acquisition of canonical babbling. Like human infants, the model’s frequency of canonical babbling gradually increases. The model is rewarded when it produces a sound that is more auditorily salient than sounds it has previously produced. This is consistent with data from human infants indicating that contingent adult responses shape infant behavior and with data from deaf and tracheostomized infants indicating that hearing, including hearing one’s own vocalizations, is critical for canonical babbling development. Reward receipt increases the level of dopamine in the neural network. The neural network contains a reservoir with recurrent connections and two motor neuron groups, one agonist and one antagonist, which control the masseter and orbicularis oris muscles, promoting or inhibiting mouth closure. The model learns to increase the number of salient, syllabic sounds it produces by adjusting the base level of muscle activation and increasing their range of activity. Our results support the possibility that through dopamine-modulated spike-timing-dependent plasticity, the motor cortex learns to harness its natural oscillations in activity in order to produce syllabic sounds. It thus suggests that learning to produce rhythmic mouth movements for speech production may be supported by general cortical learning mechanisms. The model makes several testable predictions and has implications for our understanding not only of how syllabic vocalizations develop in infancy but also for our understanding of how they may have evolved.  相似文献   
4.
Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) experienced severe declines due to habitat destruction and overfishing beginning in the late 19th century. Subsequent to the boom and bust period of exploitation, there has been minimal fishing pressure and improving habitats. However, lack of recovery led to the 2012 listing of Atlantic sturgeon under the Endangered Species Act. Although habitats may be improving, the availability of high quality spawning habitat, essential for the survival and development of eggs and larvae may still be a limiting factor in the recovery of Atlantic sturgeon. To estimate adult Atlantic sturgeon spatial distributions during riverine occupancy in the Delaware River, we utilized a maximum entropy (MaxEnt) approach along with passive biotelemetry during the likely spawning season. We found that substrate composition and distance from the salt front significantly influenced the locations of adult Atlantic sturgeon in the Delaware River. To broaden the scope of this study we projected our model onto four scenarios depicting varying locations of the salt front in the Delaware River: the contemporary location of the salt front during the likely spawning season, the location of the salt front during the historic fishery in the late 19th century, an estimated shift in the salt front by the year 2100 due to climate change, and an extreme drought scenario, similar to that which occurred in the 1960’s. The movement of the salt front upstream as a result of dredging and climate change likely eliminated historic spawning habitats and currently threatens areas where Atlantic sturgeon spawning may be taking place. Identifying where suitable spawning substrate and water chemistry intersect with the likely occurrence of adult Atlantic sturgeon in the Delaware River highlights essential spawning habitats, enhancing recovery prospects for this imperiled species.  相似文献   
5.
Starvation, chilling, and injury of last instar Galleria mellonella larvae typically elicit extra larval molts or a delay in pupation. The primary sites of action and the nature of the signals by which these treatments affect development are not known. However, since the connections of the brain to the nerve cord are crucial for the effects of starvation and chilling, these signals apparently affect the brain-centered program of developmental regulation via the nerve cord. Chilling, and occasionally starvation, cause extra larval molts in last instar larvae treated prior to the nervous inhibition of their corpora allata; release of a cerebral allatotropin, which stimulates the production of juvenile hormone, appears to be involved in this effect. After this time, a delay in pupation is the principal effect of starvation and chilling, and is apparently due to a temporal inhibition of the release of the prothoracicotropic hormone. Chilling also appears to inhibit unstimulated ecdysteroid production by the prothoracic glands. The effect of injury is not mediated by the nerve cord, but appears to involve an inhibitory humoral factor that affects either the brain or the prothoracic glands themselves. Injury also stimulates juvenile hormone production, an effect which is enhanced when the brain is separated from the nerve cord and which is evidenced by a delay of ecdysis and the occasional retention of some larval features in the ecdysed insects. None of the effects of these various treatments on the brain and the endocrine glands persist when the brains or glands are implanted into untreated hosts.  相似文献   
6.
Regulation of sodium excretion by renal interstitial hydrostatic pressure   总被引:1,自引:0,他引:1  
Renal interstitial hydrostatic pressure (RIHP) appears to play a crucial role in linking the renal circulation to the rate of tubular reabsorption of sodium and water. Various physiological and pharmacological maneuvers that increase RIHP are associated with increases in sodium excretion. Renal vasodilators that increase RIHP also increase sodium excretion, whereas the vasodilators that do not alter RIHP do not affect sodium excretion. Preventing increases in RIHP during intrarenal infusion of vasodilators markedly attenuates the normal increase in sodium and water excretion. Techniques that directly increase RIHP by renal interstitial volume expansion increase urinary excretion of sodium and water. RIHP may be an important mediator of renal perfusion pressure (RPP) natriuresis. Experimental evidence suggests that the proximal tubule of deep nephrons may be an important nephron site that is sensitive to changes in RPP.  相似文献   
7.
Peritoneal macrophages from Mycobacterium bovis- or Toxoplasma gondii-infected mice cultured in vitro in Dulbecco's medium containing 10% fetal bovine serum (FBS) and endotoxin stopped replication of Cryptococcus neoformans for 30 hr, whereas yeast cells cultured alone reproduced with a 3.0-hr doubling time. Without at least 5% FBS, macrophage fungistasis was poor. FBS without macrophages enhanced the growth rate of cryptococci. Macrophages preincubated in vitro for 24 hr without serum became fungistatic when challenged with cryptococci in medium with FBS but were not fungistatic without FBS. Macrophages preincubated in medium with FBS were never subsequently fungistatic. Dialyzed, heated (56 degrees C, 30 min), or delipidated FBS supported macrophage fungistasis, whereas FBS heated at 70 degrees C for 30 min did not. FBS contained no measurable opsonic activity for C. neoformans. Inclusion of endotoxin and/or murine IFN-gamma over wide concentration ranges did not substitute for FBS. Ultrafiltration estimation of FBS activity localized to 50 to 150 Kd. By gel filtration chromatography, FBS activity ran in the 25 to 100 Kd range. Dye-ligand affinity chromatography on Cibacron blue agarose gel dissociated the FBS activity from the albumin and lipoprotein fractions. Anion-exchange chromatography on DEAE-Sephacel revealed activity in the first fraction eluting at low ionic strength, pointing to a protein(s) with an isoelectric point toward neutral. Activated macrophages can prevent microbial replication within host tissues; the local environment is critical for fulfillment of this important physiologic function. These results point to a macromolecular factor(s) present in serum that is essential for full fungistatic capability of activated macrophages.  相似文献   
8.
A defect in mobilization of cholesteryl esters in rabbit macrophages   总被引:1,自引:0,他引:1  
Macrophages provide an important way for cholesteryl esters to accumulate in tissues in pathologic amounts. We studied cholesteryl ester metabolism in thioglycollate-induced peritoneal macrophages obtained from normocholesterolemic and hypercholesterolemic rabbits. The macrophage preparations from normocholesterolemic rabbit (MN cells) had 26 nmol esterified cholesterol/mg cellular protein, incorporated 1 nmol of labeled oleate into cholesteryloleate/2 h per mg cellular protein and had an acyl-coenzyme A:cholesterol acyltransferase activity of 22 pmol cholesterylpalmitate formed/min per mg protein in isolated membranes. The macrophage preparations from hypercholesterolemic rabbits (MHC cells) contained a 12-fold greater mass of cholesteryl ester, had an 8-times higher rate of formation of cholesteryloleate, and had 3-times more acyl-coenzyme A:cholesterol acyltransferase activity in the isolated membranes. When a cholesterol acceptor (10% fetal bovine serum or 10 mg of lipid-free fetal bovine serum protein) was added to the culture medium of rabbit MHC cells, the MHC cells retained more than 70% of their cholesteryl esters after 48 h of incubation. In contrast, when a cholesterol acceptor (10% fetal bovine serum) was added to the medium of thioglycollate-induced, cholesterol-enriched macrophages from mice, the mice macrophages retained only 19% of their cholesteryl esters after 48 h of incubation. The limited capacity of rabbit macrophages to release unesterified cholesterol from stored cytoplasmic cholesteryl esters to an exogenous acceptor may be related to the propensity of rabbits to develop atherosclerotic lesions.  相似文献   
9.
Natriuretic peptides elaborated by atrial myocytes promote marked renal sodium and water excretion as a mechanism for fluid and electrolyte balance. Recent evidence suggests that atriopeptin (ANP) also targets the non-renal vasculature as a site for enhanced fluid exchange. It remains unclear whether ANP alters microvascular integrity to facilitate the efflux of both plasma and proteins across the endothelial barrier, or if fluid exchange is selectively enhanced. This study evaluated the influence of ANP on macromolecular transport through the direct observation of microvessels in the hamster cheek pouch using fluorescent intravital microscopy. Fluorescein isothiocyanate conjugated to either bovine serum albumin or dextran 150,000 Mw was utilized as a permeability probe. Macromolecular efflux was quantified as fluorochrome clearance. The clearance of fluorescein-conjugated bovine serum albumin (57.94 +/- 7.03) or fluorescein-conjugated dextran 150 (4.09 +/- 1.35) remained unaltered by intravascular injection of 1 microgram/kg ANP. Topical application of 40 ng to cheek pouch microvessels produced similar results. All pouches demonstrated positive leakage response to histamine 2.5 x 10(-6) M, increasing fluorochrome clearance approximately 2- to 11-fold. Bolus injection of 1 microgram/kg ANP reduced mean arterial pressure, increased urine flow from 6.63 +/- 2.59 microliters/min to 8.20 +/- 6.13 microliters/min, and elevated sodium excretion from 1.37 +/- 0.49 microEq/min to 2.54 +/- 0.99 microEq/min. These results suggest that ANP fails to significantly alter the integrity of the protein-transporting channels in the microvascular exchange barrier.  相似文献   
10.
The effect of chronic dietary sodium intake on fasting and postprandial plasma atrial natriuretic factor (ANF) levels was examined in 2 studies of normal humans. In Study I, 3 separate groups of normals (n = 8 for each) received diets of either low (L), normal (N) or high (H) daily sodium intake for 7 days. Twenty-four h urines for sodium were obtained on days 6 and 7. Urine sodium excretion for each group was (L) 13.1 +/- 3.7, (N) 150.1 +/- 19.4 and (H) 271.3 +/- 33.6 mEq/day. On the completion of day 7, fasting plasma ANF showed no change with alteration in sodium intake. In contrast, when blood samples were obtained postprandially, significant increases in plasma ANF were observed in the group maintained on high sodium diet. In Study II, a continuous group of normals (n = 8) received the 3 sodium controlled diets for 7 days sequentially (L/N/H). No significant changes in fasting levels of ANF were detected between L/N/H sodium diets. In conclusion, these studies show that the maintenance of sodium balance during chronic changes in sodium intake can occur despite no significant increase in plasma ANF under normal steady state conditions. However, plasma ANF is significantly elevated during chronic high sodium intake, when measured postprandially.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号