首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3100篇
  免费   287篇
  国内免费   2篇
  2024年   5篇
  2023年   29篇
  2022年   71篇
  2021年   133篇
  2020年   78篇
  2019年   102篇
  2018年   100篇
  2017年   82篇
  2016年   144篇
  2015年   221篇
  2014年   194篇
  2013年   278篇
  2012年   308篇
  2011年   287篇
  2010年   171篇
  2009年   132篇
  2008年   188篇
  2007年   149篇
  2006年   145篇
  2005年   117篇
  2004年   94篇
  2003年   88篇
  2002年   81篇
  2001年   24篇
  2000年   13篇
  1999年   14篇
  1998年   15篇
  1997年   10篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   5篇
  1991年   8篇
  1990年   2篇
  1989年   7篇
  1988年   4篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   2篇
  1981年   4篇
  1979年   10篇
  1978年   2篇
  1973年   3篇
  1970年   2篇
  1969年   4篇
  1968年   4篇
  1966年   3篇
  1963年   2篇
排序方式: 共有3389条查询结果,搜索用时 15 毫秒
1.
Alzheimer’s disease (AD) is a devastating neurodegenerative condition with no known cure. While current therapies target late-stage amyloid formation and cholinergic tone, to date, these strategies have proven ineffective at preventing disease progression. The reasons for this may be varied, and could reflect late intervention, or, that earlier pathogenic mechanisms have been overlooked and permitted to accelerate the disease process. One such example would include synaptic pathology, the disease component strongly associated with cognitive impairment. Dysregulated Ca2+ homeostasis may be one of the critical factors driving synaptic dysfunction. One of the earliest pathophysiological indicators in mutant presenilin (PS) AD mice is increased intracellular Ca2+ signaling, predominantly through the ER-localized inositol triphosphate (IP3) and ryanodine receptors (RyR). In particular, the RyR-mediated Ca2+ upregulation within synaptic compartments is associated with altered synaptic homeostasis and network depression at early (presymptomatic) AD stages. Here, we offer an alternative approach to AD therapeutics by stabilizing early pathogenic mechanisms associated with synaptic abnormalities. We targeted the RyR as a means to prevent disease progression, and sub-chronically treated AD mouse models (4-weeks) with a novel formulation of the RyR inhibitor, dantrolene. Using 2-photon Ca2+ imaging and patch clamp recordings, we demonstrate that dantrolene treatment fully normalizes ER Ca2+ signaling within somatic and dendritic compartments in early and later-stage AD mice in hippocampal slices. Additionally, the elevated RyR2 levels in AD mice are restored to control levels with dantrolene treatment, as are synaptic transmission and synaptic plasticity. Aβ deposition within the cortex and hippocampus is also reduced in dantrolene-treated AD mice. In this study, we highlight the pivotal role of Ca2+ aberrations in AD, and propose a novel strategy to preserve synaptic function, and thereby cognitive function, in early AD patients.  相似文献   
2.
Complex coevolutionary relationships among competitors, predators, and prey have shaped taxa diversity, life history strategies, and even the avian migratory patterns we see today. Consequently, accurate documentation of prey selection is often critical for understanding these ecological and evolutionary processes. Conventional diet study methods lack the ability to document the diet of inconspicuous or difficult‐to‐study predators, such as those with large home ranges and those that move vast distances over short amounts of time, leaving gaps in our knowledge of trophic interactions in many systems. Migratory raptors represent one such group of predators where detailed diet studies have been logistically challenging. To address knowledge gaps in the foraging ecology of migrant raptors and provide a broadly applicable tool for the study of enigmatic predators, we developed a minimally invasive method to collect dietary information by swabbing beaks and talons of raptors to collect trace prey DNA. Using previously published COI primers, we were able to isolate and reference gene sequences in an open‐access barcode database to identify prey to species. This method creates a novel avenue to use trace molecular evidence to study prey selection of migrating raptors and will ultimately lead to a better understanding of raptor migration ecology. In addition, this technique has broad applicability and can be used with any wildlife species where even trace amounts of prey debris remain on the exterior of the predator after feeding.  相似文献   
3.
At around 7 months of age, human infants begin to reliably produce well-formed syllables containing both consonants and vowels, a behavior called canonical babbling. Over subsequent months, the frequency of canonical babbling continues to increase. How the infant’s nervous system supports the acquisition of this ability is unknown. Here we present a computational model that combines a spiking neural network, reinforcement-modulated spike-timing-dependent plasticity, and a human-like vocal tract to simulate the acquisition of canonical babbling. Like human infants, the model’s frequency of canonical babbling gradually increases. The model is rewarded when it produces a sound that is more auditorily salient than sounds it has previously produced. This is consistent with data from human infants indicating that contingent adult responses shape infant behavior and with data from deaf and tracheostomized infants indicating that hearing, including hearing one’s own vocalizations, is critical for canonical babbling development. Reward receipt increases the level of dopamine in the neural network. The neural network contains a reservoir with recurrent connections and two motor neuron groups, one agonist and one antagonist, which control the masseter and orbicularis oris muscles, promoting or inhibiting mouth closure. The model learns to increase the number of salient, syllabic sounds it produces by adjusting the base level of muscle activation and increasing their range of activity. Our results support the possibility that through dopamine-modulated spike-timing-dependent plasticity, the motor cortex learns to harness its natural oscillations in activity in order to produce syllabic sounds. It thus suggests that learning to produce rhythmic mouth movements for speech production may be supported by general cortical learning mechanisms. The model makes several testable predictions and has implications for our understanding not only of how syllabic vocalizations develop in infancy but also for our understanding of how they may have evolved.  相似文献   
4.
Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) experienced severe declines due to habitat destruction and overfishing beginning in the late 19th century. Subsequent to the boom and bust period of exploitation, there has been minimal fishing pressure and improving habitats. However, lack of recovery led to the 2012 listing of Atlantic sturgeon under the Endangered Species Act. Although habitats may be improving, the availability of high quality spawning habitat, essential for the survival and development of eggs and larvae may still be a limiting factor in the recovery of Atlantic sturgeon. To estimate adult Atlantic sturgeon spatial distributions during riverine occupancy in the Delaware River, we utilized a maximum entropy (MaxEnt) approach along with passive biotelemetry during the likely spawning season. We found that substrate composition and distance from the salt front significantly influenced the locations of adult Atlantic sturgeon in the Delaware River. To broaden the scope of this study we projected our model onto four scenarios depicting varying locations of the salt front in the Delaware River: the contemporary location of the salt front during the likely spawning season, the location of the salt front during the historic fishery in the late 19th century, an estimated shift in the salt front by the year 2100 due to climate change, and an extreme drought scenario, similar to that which occurred in the 1960’s. The movement of the salt front upstream as a result of dredging and climate change likely eliminated historic spawning habitats and currently threatens areas where Atlantic sturgeon spawning may be taking place. Identifying where suitable spawning substrate and water chemistry intersect with the likely occurrence of adult Atlantic sturgeon in the Delaware River highlights essential spawning habitats, enhancing recovery prospects for this imperiled species.  相似文献   
5.
A theoretical analysis of two models of the vestibulo-ocular and optokinetic systems was performed. Each model contains a filter element in the vestibular periphery to account for peripheral adaptation, and a filter element in the central vestibulooptokinetic circuit to account for central adaptation. Both models account for1 adaptation, i.e. a response decay to a constant angular acceleration input, in both peripheral vestibular afferent and vestibulo-ocular reflex (VOR) responses and2 the reversal phases of optokinetic after-nystagmus (OKAN) and the VOR and3 oscillatory behavior such as periodic alternating nystagmus. The two models differ regarding the order of their VOR transfer function. Also, they predict different OKAN patterns following a prolonged optokinetic stimulus. These models have behavioral implications and suggest future experiments.  相似文献   
6.
A complex of immunological cell tests with M. pneumoniae antigen (the lymphocyte blast-cell transformation test, the allergic neutrophil alteration test) was carried out in order to establish the correlation between the results of positive seroconversion and the sepcific immunological reactivity of lymphoid cells in pneumonia patients. Mycoplasmic cutireactive allergen, when used for the accelerated diagnosis of mycoplasmic pneumonia in humans, was shown to be specific and safe. Cuti-allergic tests with mycoplasmic allergen allowed to diagnose mycoplasmic pneumonia at early stages (beginning from days 5--7), which ensures the possibility of indicating etiotropic treatment to patients in due time.  相似文献   
7.
8.
Current tests of vestibular function concentrate on the horizontal semicircular canal-ocular reflex because it is the easiest reflex to stimulate (calorically and rotationally) and record (using electro-oculography). Tests of the other vestibulo-ocular reflexes (vertical semicircular canal and otolith) and of the vestibulospinal reflexes have yet to be shown useful in the clinical setting. Digital video recording of eye movements and vestibular-evoked responses are promising new technologies that may affect clinical testing in the near future.  相似文献   
9.
Photoreceptor channel activation by nucleotide derivatives   总被引:5,自引:0,他引:5  
Cyclic nucleotide activated sodium currents were recorded from photoreceptor outer segment membrane patches. The concentration of cGMP and structurally similar nucleotide derivatives was varied at the cytoplasmic membrane face; currents were generated at each concentration by the application of a voltage ramp. Nucleotide-activated currents were analyzed as a function of both concentration and membrane potential. For cGMP, the average K0.5 at 0 mV was 24 microM, and the activation was cooperative with an average Hill coefficient of 2.3. Of the nucleotide derivatives examined, only 8-[[(fluorescein-5-yl-carbamoyl)methyl]thio]-cGMP (8-Fl-cGMP) activated the channel at lower concentrations than cGMP with a K0.5 of 0.85 microM. The next most active derivative was 2-amino-6-mercaptopurine riboside 3',5'-monophosphate (6-SH-cGMP) which had a K0.5 of 81 microM. cIMP and cAMP had very high K0.5 values of approximately 1.2 mM and greater than 1.5 mM, respectively. All nucleotides displayed cooperativity in their response and were rapidly reversible. Maximal current for each derivative was compared to the current produced at 200 microM cGMP; only 8-Fl-cGMP produced an identical current. The partial agonists 6-SH-cGMP, cIMP, and cAMP activated currents which were approximately 90%, 80%, and 25% of the cGMP response, respectively. 5'-GMP, 2-aminopurine riboside 3',5'-monophosphate, and 2'-deoxy-cGMP produced no detectable current. The K0.5 values for cGMP activation, examined from -90 to +90 mV, displayed a weak voltage dependence of approximately 400 mV/e-fold; the index of cooperativity was independent of the applied field.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
10.
The possible differential effect of positive inotropic stimulation upon regional myocardial oxygen balance in the two ventricles was investigated during tachycardia and paired electrical stimulation. Isometric contractile force was measured by strain gauge arches; local coronary blood supply was measured by thermistor probes and intracellular NADH redox level was recorded using surface fluorometry. It was found that when contractility was increased by paired stimulation at a basic rate of 140 bpm, the inotropic response was more pronounced in the right ventricle (97.2 +/- 11.5%) than in the left (63.1 +/- 12.6%). Coronary blood supply to the left ventricle increased by 117.8 +/- 30.4% and the corresponding NADH redox level increased by 54.3 +/- 19.9%. When the contractile force was increased to the same extent (64.1 +/- 8.9%) by single stimulation at a rate of 210 bpm, the coronary flow to the left ventricle was increased by only 36.4 +/- 11.0% and the NADH state rose by 67.1 +/- 12.1%. It is concluded that paired stimulation reduced the mechanical limitation to flow during tachycardia, thus allowing coronary blood supply to increase in response to positive inotropic stimulation, thereby preserving a relatively improved oxygen state. It was also observed that the ratio contractile force/blood supply (contraction efficiency) was usually proportional to the NADH redox level (oxygen balance). Nevertheless, variations observed in the force/supply ratio for the left ventricle indicate that the NADH redox level cannot be predicted quantitatively by the force/supply ratio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号